Initial mesoscale vortex effects on the tropical cyclone (TC) motion in a system where three components coexist (i.e., an environmental vortex (EV), a TC, and mesoscale vortices) were examined using a barotropic vorticity equation model with initial fields where mesoscale vortices were generated stochastically. Results of these simulations indicate that the deflection of the TC track derived from the initial mesoscale vortices was clearly smaller than that from the beta effect in 60% of the cases. However, they may have a more significant impact on the TC track under the following circumstances. First, the interaction between an adjacent mesoscale vortex and the TC causes the emergence of a complicated structure with two centers in the TC inner region. This configuration may last for 8 h, and the two centers undergo a cyclonic rotation to make the change in direction of the TC motion. Second, two mesoscale vortices located in the EV circulation may merge, and the merged vortex shifts into the EV inner region, intensifying both the EV and steering flow for the TC, increasing speed of the TC.
Energy dispersion is a fundamental scientific problem in the study of natural disasters such as typhoons, heavy rain and earthquakes. The problem has been addressed by both multi-discipline research and forecast studies. The dynamics of isolated circular vortex energy dispersion have been solved. However, the disastrous results of typhoons and heavy rain often occur due to non-isolated circular vortices, the dynamics of which are explored in this paper. The energy dispersion characteristics of non-isolated vortices with complex structural patterns are examined using a linearized nondivergent barotropical vorticity equation model. In the initial field, a tropical cyclone (TC) vortex and a meso-scale vortex coexist, forming a complex structural pattern. An analytic solution based on a Fourier transform and simulations using a two-dimensional model show the following. (1) A wave train of TC-G-D may be created by the energy dispersion where the line connecting the three member centers of the wave train is parallel to the x axis in the case of an initial TC vortex without a meso-scale vortex. (2) A wave train of TC-G-D may also be created by energy dispersion. However, the line connecting the three member centers of the wave train would no longer be parallel to the x axis. Instead, they would form a triangle in the presence of the initial TC vortex with the meso-scale vortex. (3) There is a nonlinear relationship between the initial intensity of the meso-scale vortex and the base angle of the triangle. These results have the potential to be applied in the field of typhoon forecasting.
LUO ZheXian 1,2 1 Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, Nanjing 210044, China
We used a two-dimensional quasi-geostrophic barotropic model simulation to study effects of an initial brows-like meso-scale vortex on tropical cyclone (TC) track. Our results show that the impact of each of the three foundational factors (the environ- mental current, the asymmetric structure and the asymmetric convection system) on TC track varies with time and the im- portance of each of the factors is different for the different TC motion time period. They show two kinds of the effects. One is a direct way. The asymmetric outer wind structure and the positive longitudinal wind speed averaged in radial-band (100-300) km in the period of (0-11) h are caused by the introduction of the initial brows-like meso-scale vortex, which results in TC track to turn to the north from the northwest directly. The other is an indirect influence. First, initial TC axisymmetric circula- tion becomes a non-axisyrnmetric circulation after the addition of the meso-scale vortex. The initial non-axisymmetric circula- tion experiences an axisymmetrizational process in the period of (0-11) h. Second, axisymmetrizationed TC horizontal size is enlarged after t=-12 h. Third, both the TC asymmetric structure and the TC energy dispersion induced-anticyclone are intensi- fied, which quickens the TC motion and results in the track to turn to the north indirectly. The TC motion is characterized by the unusual track under the direct and the indirect effect. The formation of the unusual track should be attributed to the com- mon effects of three factors, including the environmental flow, the TC asymmetric structure and the asymmetric convection system.
The formation and evolution of fine and complicated vortex circulation structures were investigated using a two-dimensional quasi-geostrophic barotropic model simulation.We find that the highly localized asymmetric and complex configuration of energy transfer flux between large-and small-scale components is caused by the nonlinear interaction between a large-scale vortex with an initial axi-symmetric flow and four beta meso-scale vortices.The complex structure is characterized by a fine pattern,which contains seven closed systems with spatial scales of less than 100 km,embedded in a positive flux wave train and a negative wave train,respectively.The average wind speed decreased with time in the positive flux region,but was nearly unchanged in the negative flux region.This pattern reveals the evolutionary asymmetry and localization of wind speed of the major vortex.The track of the major vortex center has a trend toward the center of the negative flux center,indicating that there is a certain relation between the complex structure of the energy transfer flux and the motion of the major vortex center.These results imply that the formation and evolution of the fine and complex structure should be attributed to the nonlinear interaction between the vortices at different spatial scales.
LUO ZheXian1,MA GeLan1 & PING Fan2 1 Remote Sensing College,Nanjing University of Information Science and Technology,Nanjing 210044,China
This paper examines initial meso-scale vortex effects on the motion of a tropical cyclone (TC) in a system where coexisting two components of TC and meso-scale vortices with a barotropic vorticity equation model. The initial mesoscale vortices are generated stochastically by employing Reinaud's method. The 62 simulations are performed and analysed in order to understand the statistical characteristics of the effects. Results show that the deflection of the TC track at t = 24 h induced by the initial meso-scale vortices ranges from 2 km to 37 km with the mean value of 13.4 km. A more significant deflection of the TC track can be reduced when several initial meso-scale vortices simultaneously appear in a smaller TC circulation area. It ranges from 22 km to 37 km with the mean value of 28 km, this fact implies that the initial meso-scale vortices-induced deflection may not be neglected sometimes.