In this article, we study the uniqueness question of nonconstant meromorphic functions whose nonlinear differential polynomials share 1 or have the same fixed points in an angular domain. The results in this article improve Theorem 1 of Yang and Hua [26], and improve Theorem 1 of Fang and Qiu [6].
We prove an oscillation theorem of two meromorphic functions whose derivatives share four values IM. From this we obtain some uniqueness theorems, which improve the corresponding results given by Yang [16] and Qiu [10], and supplement results given by Nevanlinna [9] and Gundersen [3, 4]. Some examples are provided to show that the results in this paper are best possible.