Variance of parameter estimate in Cox’s proportional hazards model is based on asymptotic variance. When sample size is small, variance can be estimated by bootstrap method. However, if censoring rate in a survival data set is high, bootstrap method may fail to work properly. This is because bootstrap samples may be even more heavily censored due to repeated sampling of the censored observations. This paper proposes a random weighting method for variance estimation and confidence interval estimation for proportional hazards model. This method, unlike the bootstrap method, does not lead to more severe censoring than the original sample does. Its large sample properties are studied and the consistency and asymptotic normality are proved under mild conditions. Simulation studies show that the random weighting method is not as sensitive to heavy censoring as bootstrap method is and can produce good variance estimates or confidence intervals.
Single index models are widely used in medicine, econometrics and some other fields. In this paper, we consider the inference of a change point problem in single index models. Based on density-weighted average derivative estimation (ADE) method, we propose a statistic to test whether a change point exists or not. The null distribution of the test statistic is obtained using a permutation technique. The permuted statistic is rigorously shown to have the same distribution in the limiting sense under both null and alternative hypotheses. After the null hypothesis of no change point is rejected, an ADE-based estimate of the change point is proposed under assumption that the change point is unique. A simulation study confirms the theoretical results.