As a generalization of an orthodox semigroup in the class of regular semigroups, a type W semigroup was first investigated by El-Qallali and Fountain. As an analogy of the type W semigroups in the class of abundant semigroups, we introduce the U-orthodox semigroups. It is shown that the maximum congruence μ contained in on U-orthodox semigroups can be determined. As a consequence, we show that a U-orthodox semigroup S can be expressed by the spined product of a Hall semigroup W U and a V-ample semigroup (T,V). This theorem not only generalizes a known result of Hall-Yamada for orthodox semigroups but also generalizes another known result of El-Qallali and Fountain for type W semigroups.