Assisted by graphene oxide(GO),nano-sized LiMn0.6Fe0.4PO4 with excellent electrochemical performance was prepared by a facile hydrothermal method as cathode material for lithium ion battery.SEM and TEM images indicate that the particle size of LiMn0.6Fe0.4PO4(S2)was about 80 nm in diameter.The discharge capacity of LiMn0.6Fe0.4PO4 nanoparticles was 140.3 mAh-g^1 in the first cycle.It showed that graphene oxide was able to restrict the growth of LiMn0.6Fe0.4PO4 and it in situ reduction of GO could improve the electrical conductivity of LiMn0.6Fe0.4PO4 material.
LiNiCoAlO(NCA) with Zr(OH)coating is demonstrated as high performance cathode material for lithium ion batteries(LIBs). The coated materials are synthesized via a simple dry coating method of NCA with Zr(OH)powders, and then characterized with scanning electron microscopy(SEM), transmission electron microscopy(TEM) and X-ray photoelectron spectroscopy(XPS). Experimental results show that amorphous Zr(OH)powders have been successfully coated on the surface of spherical NCA particles, exhibiting improved electrochemical performance. 0.50 wt% Zr(OH)coated NCA delivers a capacity of 197.6 mAh/g at the first cycle and 154.3 mAh/g after 100 cycles with a capacity retention of 78.1% at 1 C rate. In comparison, the pure NCA shows a capacity of 194.6 mAh/g at the first cycle and 142.5 mAh/g after 100 cycles with a capacity retention of 73.2% at 1 C rate. Electrochemical impedance spectroscopy(EIS) results show that the coated material exhibits a lower resistance, indicating that the coating layer can efficiently suppress transition metals dissolution and decrease the side reactions at the surface between the electrode and electrolyte. Therefore, surface coating with amorphous Zr(OH)is a simple and useful method to enhance the electrochemical performance of NCA-based materials for the cathode of LIBs.
Developing high-performance anode materials for potassium-ion batteries is significantly urgent. We here demonstrate Sb_2S_3 nanoparticles(~20 nm) homogeneously dispersed in porous S,N-codoped graphene framework(Sb_2S_3-SNG) as a self-supported anode material for potassium-ion batteries. The rational structure design of integrating Sb_2S_3 nanoparticles with S,N-codoped graphene contributes to high reactivity, strong affinity, good electric conductivity, and robust stability of the composite, enabling superior K-storage performance. Moreover, the self-supported architecture significantly decreases the inactive weight of the battery, resulting in a high energy density of a Sb_2S_3-SNG/KVPO_4 F-C full cell to ~166.3 W h kg^(-1).
The synthetic routes of porous carbons and the applications of the functional porous carbon-based composite electrode materials for lithium secondary batteries are reviewed. The synthetic methods have made great breakthroughs to control the pore size and volume, wall thickness, surface area, and connectivity of porous carbons, which result in the development of functional porous carbon-based composite electrode materials. The effects of porous carbons on the electrochemical properties are further discussed. The porous carbons as ideal matrixes to incorporate active materials make a great improvement on the electrochemical properties because of high surface area and pore volume, excellent electronic conductivity, and strong adsorption capacity. Large numbers of the composite electrode materials have been used for the devices of electrochemical energy conversion and storage, such as lithium-ion batteries (LIBs), Li-S batteries, and Li-O2 batteries. It is believed that functional porous carbon-based composite electrode materials will continuously contribute to the field of lithium secondary batteries.