A class of analytical solitary-wave solutions to the generalized nonautonomous cubic–quintic nonlinear Schrdinger equation with time-and space-modulated coefficients and potentials are constructed using the similarity transformation technique. Constraints for the dispersion coefficient, the cubic and quintic nonlinearities, the external potential, and the gain (loss) coefficient are presented at the same time. Various shapes of analytical solitary-wave solutions which have important applications of physical interest are studied in detail, such as the solutions in Feshbach resonance management with harmonic potentials, Faraday-type waves in the optical lattice potentials, and localized solutions supported by the Gaussian-shaped nonlinearity. The stability analysis of the solutions is discussed numerically.
We present exact bright multi-soliton solutions of a generalized nonautonomous nonlinear Schroinger equation with time-and space-dependent distributed coefficients and an external potential which describes a pulse propagating in nonlinear media when its transverse and longitudinal directions are nonuniformly distributed.Such solutions exist in certain constraint conditions on the coefficients depicting dispersion,nonlinearity,and gain(loss).Various shapes of bright solitons and interesting interactions between two solitons are observed.Physical applications of interest to the field and stability of the solitons are discussed.