In this paper,in order to stabilize the position and angle of the light source point,a new photon beam position feedback system based on the Photon Beam Position Monitors was developed on Hefei Light Source,and used to correct the position drift and angle variation of the light source at the same time.On introducing the feedback principle,the transfer function matrix is calibrated,indicating that the new system is workable and effective.
The new beam position monitor(BPM) system of the injector at the upgrade project of the Hefei Light Source(HLS II) has 19 stripline beam position monitors. Most consist of four orthogonally symmetric stripline electrodes. Differences in electronic gain and mismachining tolerance can cause changes in the beam response of the BPM electrodes. This variation will couple the two measured horizontal positions, resulting in measuring error. To alleviate this effect, a new technique to measure the relative response of the four electrodes has been developed. It is independent of the beam charge, and the related coefficient can be calculated theoretically. The effect of electrode coupling on this technique is analyzed. The calibration data is used to fit the gain for all 19 injector beam position monitors. The results show the standard deviation of the distribution of measured gains is about 5%.
In the upgrade project of Hefei Light Source(HLSⅡ),a new digital longitudinal bunch-by-bunch feedback system will be developed to suppress the coupled bunch instabilities in the storage ring effectively.We design a new waveguide overloaded cavity longitudinal feedback kicker as the feedback actuator.The beam pipe of the kicker is a racetrack shape so as to avoid a transition part to the octagonal vacuum chamber.The central frequency and the bandwidth of the kicker have been simulated and optimized to achieve design goals by the HFSS code.A higher shunt impedance can be obtained by using a nose cone to reduce the feedback power requirement.Before the kicker cavity was installed in the storage ring,a variety of measurements were carried out to check its performance.All these results of simulation and measurement are presented.