For the technology of diamond cutting of optical glass, the high tool wear rate is a main reason for hindering the practical application of this technology. Many researches on diamond tool wear in glass cutting rest on wear phenomenon describing simply without analyzing the genesis of wear phenomenon and interpreting the formation process of tool wear in mechanics. For in depth understanding of the tool wear and its effect on surface roughness in diamond cutting of glass, experiments of diamond turning with cutting distance increasing gradually are carried out on soda-lime glass. The wear morphology of rake face and flank face, the corresponding surface features of workpiece and the surface roughness, and the material compositions of flank wear area are detected. Experimental results indicate that the flank wear is predominant in diamond cutting glass and the flank wear land is characterized by micro-grooves, some smooth crater on the rake face is also seen. The surface roughness begins to increase rapidly, when the cutting mode changes from ductile to brittle for the aggravation of tool wear with the cutting distance over 150 m. The main mechanisms of inducing tool wear in diamond cutting of glass are diffusion, mechanical friction, thermo-chemical action and abrasive wear. The proposed research makes analysis and research from wear mechanism on the tool wear and its effect on surface roughness in diamond cutting of glass, and provides theoretical basis for minimizing the tool wear in diamond cutting brittle materials, such as optical glass.
To improve the machinability of optical glass and achieve optical parts with satisfied surface quality and dimensional accuracy, scratching experiments with increasing cutting depth were conducted on glass SF6 to evaluate the influence of cutting fluid properties on the machinability of glass. The sodium carbonate solution of 10.5% concentration was chosen as cutting fluid. Then the critical depths in scratching experiments with and without cutting fluid were examined. Based on this, turning experiments were carried out, and the surface quality of SF6 was assessed. Compared with the process of dry cutting, the main indexes of surface roughness decrease by over 70% totally. Experimental results indicated that the machinability of glass SF6 can be improved by using the sodium carbonate solution as cutting fluid.