Organic light emitting diodes (OLEDs) incorporating an n-doping transport layer comprised of 8-hydroxy-quin- olinato lithium (Liq) doped into 4' 7- diphyenyl-1,10-phenanthroline (BPhen) as ETL and a p-doping transport layer that includes tetrafluro-tetracyano-quinodimethane (F4- TCNQ) doped into 4,4′, 4″-tris (3-methylphenylphenylamono) triphe- nylamine (m-MTDATA) are demonstrated. In order to examine the improvement in the conductivity of transport layers, hole-only and electron-only devices are fabricated. The current and power efficiency Of organic light-emitting diodes are improved significantly after introducing an n-doping (BPhen:33wt% Liq) layer as an electron transport layer (ETL) and a p-doping layer composed of m-MTDATA and F4- TCNQ as a hole transport layer (HTL). Compared with the control device (without doping) , the current efficiency and power efficiency of the most efficient device (device C) are enhanced by approximately 51% and 89% ,respectively, while driving voltage is reduced by 29%. This improvement is attributed to the improved conductivity of the transport layers that leads to efficient charge balance in the emission zone.
Blue and white top-emitting organic light-emitting devices OLEDs with cavity effect have been fabricated. TBADN:3%DSAPh and Alq3:DCJTB/TBADN:TBPe/Alq3:C545 were used as emitting materials of microcavity OLEDs. On a patterned glass substrate, silver was deposited as re?ective anode, and copper phthalocyanine (CuPc) layer as HIL and 4’-bis[N-(1-Naphthyl)- N-phenyl-amino]biphenyl (NPB) layer as HTL were made. Al/Ag thin films were made as semi-transparent cathode with a transmittance of about 30%. By changing the thickness of indium tin oxide ITO, deep blue with Commission Internationale de L’Eclairage chromaticity coordinates (CIEx,y) of (0.141, 0.049) was obtained on TBADN:3%DSAPh devices, and different color(red, blue and green)was obtained on Alq3:DCJTB/TBADN:TBPe/Alq3:C545 devices, full width at half maxima (FWHM) was only 17 nm. The spectral intensity and FWHM of emission in cavity devices have also been studied.
We have investigated a SiO2/SiNx/SiO2composite insulation layer structured gate dielectric for an organic thin film transistor(OTFT) with the purpose of improving the performance of the SiO2gate insulator. The SiO2/SiNx/SiO2composite insulation layer was prepared by magnetron sputtering.Compared with the same thickness of a SiO2insulation layer device,the SiO2/SiNx/SiO2composite insulation layer is an effective method of fabricating OTFT with improved electric characteristics and decreased leakage current.Electrical parameters such as carrier mobility by field effect measurement have been calculated.The performances of different insulating layer devices have been studied,and the results demonstrate that when the insulation layer thickness increases,the off-state current decreases.