The experiment on quasi-phase-matched second harmonic generation (SHG) in a channel waveguide was reported. The waveguide was made by annealed proton exchange in the periodically poled lithium niobate (PPLN) with the period of PPLN of 14.9 μm, which was designed for cascading wavelength conversion in dense wavelength division multiplexer optical communications. The measurement results of SHG conversion efficiency as a function of fundamental wavelength at room temperature fit well to sinc^2 shape. The peak of SHG conversion efficiency was 75%·W~ -1 ·cm~ -2 as well as reported. The relationship between the center fundamental wavelength and temperature shows that SHG can be effectively tuned by the temperature in PPLN waveguide.
A method for generating multi-wavelength light source is theoretically investigated by optical parametric oscillation (OPO) in aperiodic optical superlattice (AOS). The effects of domain errors caused by the ro om-temperature electric poling process are checked. The relationship between the linewidth and the block length is also discussed.