Effects of elevated CO, (5000 μl/L) on sensitivity comparison of six species of algae and interspecific competition of three species of algae were investigated. The results showed that, the cell densities of six species of algae grown in elevated CO2 significantly increased compared to those in ambient CO2 (360 μl/L), and with the time prolonged, the increasing extent increased. Therefore, elevated CO2 can promote the growth of six species of algae. However, there were differences in sensitivity between six species of algae. Based on the effects of elevated CO2 on biomass, the sensitive order (from high to low) was Platymanas sp., Platymanas subcordiformis, Nitzschia closterium, Isochrysis golbana Parke 8701, Dunoliella salina, Chlorella sp., on the condition of solitary cultivation. Compared to ambient CO2, elevated CO2 promoted the growth of three species of algae, Platymanas subcordiformis, Nitzschia closterium and Isochrysis galbana Parke 8701 under the condition of mixed cultivation. The sensitivity of the three species to elevated CO2 in mixed cultivation changed a lot compared to the condition of solitary cultivation. When grown in elevated CO2 under the condition of mixed cultivation, the sensitive order from high to low were Nitzschia clostertium, Platymonas subcordiformis; and Isochrysis galbana Parke 8701. However, under the condition of solitary cultivation, the sensitive order in elevated CO2 was Isochrysis galbana Parke 8701, Nitzschia clostertium, Platymonas subcordiformis, from sensitive to less sensitive. On the day 21, the dominant algae, the sub-dominant algae and inferior algae grown in elevated CO2 did not change. However, the population increasing dynamic and composition proportion of three algal species have significantly changed.
In the present study, we evaluated the allelopathic effects of three macroalgae, namely Ulva pertusa Kjellml, Corallina pilufifera Postl et Ruprl, and Sargassum thunbergii Mertl O. Kuntze, on the growth of the microalga Skeletonema costaturn (Grev.) Creve using culture systems in which the algae coexisted. The effects of the macroalgal culture medium filtrate on S. costatum were also investigated. Moreover, isolated co-culture systems were built to confirm the existence of allelochemicals and preclude growth inhibition by direct contact. The coexistence assay data demonstrated that the growth of S. costaturn was strongly inhibited when fresh tissues, dry powder and aqueous extracts were used; the allelochemicals were lethal to S. costatum at relatively higher concentrations. The effects of the macroalgal culture medium filtrate on the microalga showed both species specificity and complexity. The inhibitory effect of fresh macroalgal tissue and culture medium filtrate on the microalga was due to the alleochemicals released by the macroalgae. The results of the present study show that the allelopathic effects of macroalgae on the microalga are complex. The present study could shed light onto the basis of the interaction between macro- and microalgae.
Effect of UV-B radiation on ingesting and nutritional selecting behavior of the roifer Brachionus urceus on 5 species of microlgae were studied under controlled laboratory conditions. Restdts showed that enhanced UV-B radiation significantly inhibited ingesting of the rotifer B. urceus when it was fed with 5 species of micro-algae (p〈0.05). The ingesting selectivity rate varied with the UV-B radiation enhancement when it was fed with 5 species micro-algal mixture. Results indicated that the enhanced UV-B radiation could affect ingesting and nutritional selectivity of B. urceus.