A new comprehensive empirical large signal model for 4H-SiC MESFETs is proposed. An enhanced drain current model,along with an improved charge conservation capacitance model,is presented by the improvement of the channel length modulation and the hyperbolic tangent function coefficient based on the Materka model. The Levenberg-Marquardt method is used to optimize the parameter extraction. A comparison of simulation resuits with experimental data is made,and good agreements of I-V curves, Pout (output power), PAE (power added efficiency) ,and gain at the bias of Vos = 20V, Ips = 80mA as well as the operational frequency of 1.8GHz are obtained.
N-wells are created by P+ ion implantation into Si-faced p-type 4H-SiC epilayer. Ti and Ni are deposited in sequence on the surface of the active regions. Ni2Si is identified as the dominant phase by X-ray diffraction (XRD) analysis after metallization annealing. An amorphous C film at the Ni2 Si/SiC interface is confirmed by an X-ray energy-dispersive spectrometer (XEDS). The Ni2Si and amorphous C film are etched away selectively,followed by deposition of new metal films without annealing. Measurement of the current-voltage characteristics shows that the contacts are still ohmic after the Ni2 Si and amorphous C film are replaced by new metal films. The sheet resistance Rsh of the implanted layers decreases from 975 to 438f2/D, because carbon vacancies (Vc) appeared during annealing,which act as donors for electrons in SiC.