The frequent drawdown of water level of Yangtze River will greatly influence the stability of the widely existing slopes in the Three Gorges reservoir zone, especially those layered ones. Apart from the fluctuating speed of water level, the different geological materials will also play important roles in the failure of slopes. Thus, it must be first to study the mechanism of such a landslide caused by drawdown of water level. A new experimental setup is designed to study the performance of a layered slope under the drawdown of water level. The pattern of landslide of a layered slope induced by drawdown of water level has been explored by means of simulating experiments. The influence of fluctuating speed of water level on the stability of the layered slope is probed, especially the whole process of deformation and development of landslide of the slope versus time. The experimental results show that the slope is stable during the water level rising, and the sliding body occurs in the upper layer of the slope under a certain drawdown speed of water level. In the process of slope failure, some new small sliding body will develop on the main sliding body, and the result is that they speed up the disassembly of the whole slope. Based on the simulating experiment on landslide of a layered slope induced by drawdown of water level, the stress and displacement field of the slope are calculated. The seepage velocity, the pore water pressure, and the gradient of pore water head are also calculated for the whole process of drawdown of water level. The computing results are in good agreement with the experimental results. Accordingly, the mechanism of deformation and landslide of the layered slope induced by drawdown of water level is analyzed. It may provide basis for treating this kind of layered slopes in practical engineering.
The water content distribution in the surface layer of Maoping slope has been studied by testing the water content at 31 control sites.The water content profiles at these sites have also been determined.The water content distributions at different segments have been obtained by using the Kriging method of geostatistics.By comparing the water content distributions with the landform of the slope,it was shown that the water content is closely dependent on the landform of the slope.The water content distribution in the surface layer provided a fundamental basis for landslide predication and treatment.
LIU YuewuCHEN HuixinLIU QingquanGONG XinZHANG DaweiLI Lianxiang
Based on 2D Janbu’s generalized procedure of slices (GPS), a new three- dimensional slope stability analysis method has been developed, in which all forces acting on the discretized blocks in static equilibrium are taken into account in all three directions. In this method, the potential sliding mass is divided into rigid blocks and each block is analyzed separately by using both geometric relations and static equilibrium formulations. By introducing force boundary conditions, the stability problem is determined statically. The proposed method can be applied to analyze the stability of slopes with various types of potential sliding surfaces, complicated geological boundaries and stratifications, water pressure, and earthquake loading. This method can also be helpful in determining individual factor of safety and local potential sliding direction for each block. As an extension of 2D Janbu’s method, the present method has both the advantages and disadvantages of Janbu’s generalized procedure of slices.
This paper provides a numerical approach on achieving the limit equilibrium method for 3D slope stability analysis proposed in the theoretical part of the previous paper. Some programming techniques are presented to ensure the maneuverability of the method. Three examples are introduced to illustrate the use of this method. The results are given in detail such as the local factor of safety and local potential sliding direction for a slope. As the method is an extension of 2D Janbu’s generalized procedure of slices (GPS), the results obtained by GPS for the longitudinal sections of a slope are also given for comparison with the 3D results. A practical landslide in Yunyang, the Three Gorges, of China, is also analyzed by the present method. Moreover, the proposed method has the advantages and disadvantages of GPS. The problem frequently encountered in calculation process is still about the convergency, especially in analyzing the stability of a cutting corner. Some advice on discretization is given to ensure convergence when the present method is used. However, the problem about convergency still needs to be further explored based on the rigorous theoretical background.