Biomineralization may have an extremely long evolutionary history since the Paleoarchean, while the widespread biomineralization among metazoan lineages started at the earliest Cambrian. However, the primary mineralogy of Anabarites shell remains controversial. Optical microscopic observations combined with the Back-Scattered Electron(BSE) and Energy-Dispersive X-ray Spectroscopy(EDS) analyses are used to study the shell of the fossil Anabarites from the Kuanchuanpu fauna in southern Shaanxi Province in China, which is correlated to the Cambrian Fortunian Stage. The EDS analysis shows that the phosphorus-rich layer closely adjacent to the calcified layer exhibits a Ca: P: C ratio compositionally similar to the mineral fluorapatite(Ca_5(PO_4,CO_3)_3(F,CO_3). The result that the calcified layer and the phosphorus-rich layer have different chemical compositions is consistent with the optical observation that there is an obvious gap between these two layers and the phosphorus-rich layer can extend to the phosphatic material inside of the tube, suggesting the phosphorus-rich layer doesn't belong to the original shell. We suggest that the phosphorous-rich layer is diagenetic in origin, precipitated as a result of phosphorus release during the decay of organic matter by microbes. Considering the outermost shell layer(OMS, biologically controlled carbonate shell layer) should display different isotopic information from the carbonate matrix(i.e., OMS is ^(12)C concentrated due to the biogenic organic matter template is readily rich in ^(12)C), Nano SIMS was used to map ion distributions of C and N in the shell of Anabarites and matrix. However, ion images show that the concentration differences of ^(12)C, ^(13)C and ^(26)CN among the OMS and the matrix are unclear, while ^(12)C and ^(26)CN are supposed to be enriched in the OMS. Therefore, the minor isotopic differences between the shell and the matrix is hard to be detected by Nano SIMS, at least in our sample,
Carbon isotope, sulfur isotope, and trace element(including Rare Earth Elements, REE) analyses were conducted on the carbonates of the Dengying Formation at Lianghekou section in southern Shaanxi to reconstruct the terminal Ediacaran shallow-water environment on the northwestern margin of the Yangtze Platform. At Lianghekou section, samples in the middle 50-m of the Beiwan Member show characteristics of low ΣREE concentrations, no MREE-enriched REE distribution patterns, high Ce/Ce* values close to 1, and enriched redox-sensitive elements, whereas samples in the lower 30-m and upper 10-m show opposite characteristics of high ∑REE concentrations, MREE-enriched REE distribution patterns, low Ce/Ce* values around 0.6, and no redox-sensitive elements enriched, indicating that oxygenation did occur in the shallow water on the northwestern margin of the Yangtze Platform and redox conditions of the shallow water fluctuated from relatively oxygenated to anoxic and then back to oxygenated again. We propose that the anoxia appeared in middle of the Beiwan time may associate with the anoxic upwelled water. On one hand, abundant nutrients were brought in by this upwelling event, which stimulated the photosynthetic carbon fixation and increased the organic carbon burial under this anoxic condition, causing a peak of 3.6‰ in δ 13 C. On the other hand, because the anoxic upwelled water replaced the oxic shallow water, together with the increasing organic matter in the water column, bacterial sulfate reduction was enhanced and therefore quickly reduced the sulfate concentration, which eventually caused δ 34 S increasing to 50‰. However, as the upwelling gradually disappeared, δ 13 C and δ 34 SCAS values decreased as well in the late Beiwan time, indicating the shallow water went back to suboxic or oxic again.