A new gelator 1 based on tetraphenylethylene(TPE) and diphenylalanine was designed and synthesized.Compound 1 was non-emissive in solution,but its fluorescence turned on after the formation of gels,due to the aggregation-induced emission(AIE) feature of TPE.Interestingly,the fluorescence was reversibly switched "on-off" upon the "gel-sol" transition.Scanning electron microscope(SEM),confocal laser scanning microscope(CLSM) and X-ray diffraction(XRD) were employed to study the gels.
In order to understand the Kondo effect observed in molecular systems, first-principles calculations have been widely used to predict the ground state properties of molecules on metal substrates. In this work, the interaction and the local magnetic moments of magnetic molecules (3d-metal phthalocyanine and tetraphenylporphyrin molecules) on noble metal surfaces are investigated based on the density functional theory. The calculation results show that the dz2 orbital of the transition metal atom of the molecule plays a dominant role in the molecule-surface interaction and the adsorption energy exhibits a simple declining trend as the adsorption distance increases. In addition, the Au(111) surface generally has a weak interaction with the adsorbed molecule compared with the Cu(ll 1) surface and thus serves as a better candidate substrate for studying the Kondo effect. The relation between the local magnetic moment and the Coulomb interaction U is examined by carrying out the GGA+U calculation according to Dudarev's scheme. We find that the Coulomb interaction is essential for estimating the local magnetic moment in molecule-surface systems, and we suggest that the reference values of parameter U are 2 eV for Fe and 2-3 eV for Co.
A n-type small molecule DC-IDT2E with 4,4,9,9-tetrakis(4-hexylphenyl)-indaceno[1,2-b:5,6-bt]dithiophene as a central building block, furan as rr-bridges, and 1,1 -dicyanomethylene-3-indanone as end acceptor groups, was synthesized and used as an electron acceptor in solution-processed organic solar cells (OSCs). DC-IDT2F exhibited good thermal stability, broad and strong absorption in 500-850 rim, a narrow bandgap of 1.54 eV, LUMO of-3.88 eV, HOMO of-5.44 eV and an electron mobility of 6.5 × 10-4 cm2/(V.s). DC-IDT2F-based OSCs with conventional and inverted structures exhibited power conversion efficiencies of 2.26 and 3.08% respec- tively. The effect of vertical phase separation and morphology of the active layer on the device performance in the two structures was studied.
Organic small molecules (TPA-BT3T, TPA-PT3T, and TPA-DFBT3T) using triphenylamine as a donor unit, terthiophene as a bridge, and benzo-2,1,3-thiadiazole (BT), [1,2,5]thiadiazolo[3,4-e]pyridine (PT) or 5,6-difluorobenzo[c][1,2,5]thiadiazole (DFBT) as an acceptor unit were designed and synthesized through Suzuki coupling reactions. These molecules exhibited good thermal stability with decomposition temperatures over 380℃ and broad absorption from 300 to 700 nm. Photovoltaic devices were fabricated with these small molecules as donors and PC71BM as an acceptor. The TPA-BT3T based devices exhibited a power conversion efficiency of 2.89%, higher than those of the TPA-PT3T- and TPA-DFBT3T-based devices (1.34% and 1.54% respectively). The effects of electron-withdrawing units on absorption, energy level, charge transport, morphology, and photovoltaic properties also were investigated.