We investigate the angular distribution of the transmitted 18keV negative ions Cl- through Al2O3 nanocapillaries of 50 nm in diameter and 10 μm in length. Elastic scattering ions and inelastic scattering ions are obtained simultaneously. The experimental result is partially consistent with the guiding effect. We can qualitatively explain our experimental result through a dynamic process.
This paper reports that the transmission of O6+ ions with energy of 150keV through capillaries in an uncoated Al2O3 membrane was measured, and agreements with previously reported results in general angular distribution of the transmitted ions and the transmission fractions as a function of the tilt angle well fitted to Gaussian-like functions were observed. Due tousing an uncoated capillary membrane, our φc is larger than that using a gold-coated one with a smaller value of Ep/q, which suggests a larger equilibrium charge Q∞ in our experiment. The observed special width variation with time and a larger width than that using a smaller Ep/q were qualitatively explained by using mean-field classical transport theory based on a classical-trajectory Monte Carlo simulation.
The transmissions of oxygen ions through Al2O3 nanocapillaries each 50 nm in diameter and 10 μm in length at a series of different tilt angles are measured, where the ions with energies ranging from 10 to 60 keⅤ and charge states from 1 up to 6 are involved. The angular distribution and the transmission yields of transported ions are investigated. Our results indicate both the existence of a guiding effect when ions pass through the capillary and a significant dependence of the ion transmission on the energy and the charge state of the ions. The guiding effects are observed to be enhanced at lower projectile energies and higher charge states. Meanwhile, the results also exhibit that the transmission yields increase as the tilt angle decreases at a given energy and charge state.
We have measured the cross-section ratios of helium induced by Cq+ and Oq+ (q = 1-4) in an energy range from 20 keV/amu to 500 keV/amu, and obtained the two-dimensional spectra by employing the coincidence method combined with the MPA-3 data acquisition system. Hence, we obtain the ratios of total single-ionization cross-sections (SI, SC, SLSI, and DLSI), total double-ionization cross-sections (DI, DC, TI, SLDI, and DLDI) and cross-sections of every process (SI, SC, SLSI, DLSI, DI, DC, TI, SLDI, and DLDI), which induce the single-ionization and double-ionization, to the total cross sections respectively. The competitive relations between the reaction-channels and the experimental data law of each reaction-channel are revealed explicitly, and the qualitative explanations involved in those results are also presented accordingly.
The values of direct double- to-single ionization ratio R of helium atoms induced by C^q+, O^q+ (q = 1 -4) ions at incident energies from 0.2 to 8.5MeV are measured. Based on the existing model (Shao J X, Chen X M and Ding B W 2007 Phys. Rev. A 75 012701) the effective charge of the projectile is introduced to theoretically estimate the value of R for the partially stripped ions impacting on helium atoms. The results calculated from our "effective charge" model are in good agreement with the experimental data, and the dependence of the effective charge on the ionization energy of the projectile is also discussed qualitatively.