The qualitative properties of a predatorprey system with Holling-(n + 1) functional response and a fairly general growth rate are completely investigated. The necessary and sufficient condition to guarantee the uniqueness of limit cycles is given. Our work extends the previous relevant results in the reference.
Bifurcations of a degenerate homoclinic orbit with orbit flip in high dimensional system are studied. By establishing a local coordinate system and a Poincare map near the homoclinic orbit, the existence and uniqueness of 1-homoclinic orbit and 1-periodic orbit are given. Also considered is the existence of 2-homoclinic orbit and 2-periodic orbit. In additon, the corresponding bifurcation surfaces are given.
By using the continuation theorem of coincidence degree theory, the sufficient conditions to guarantee the existence of positive periodic solutions are established for nonautonomous predator-prey systems with discrete and continuously distributed delays.
A class of Beddington-DeAngelis' type predator-prey dynamic system with prey and predator both having linear density restriction is considered. By using the qualitative methods of ODE, the existence and uniqueness of positive equilibrium and its global asymptotic stability are analyzed. The direct criterions for local stability of positive equilibrium and existence of limit cycle are also established when inference parameter of predator is small.
Xiao Haibin Department of Mathematics, Ningbo University, Zhejiang 315211,China