您的位置: 专家智库 > >

国家自然科学基金(60575012)

作品数:5 被引量:28H指数:3
相关作者:李小俚关新平李岩欧阳高翔崔素媛更多>>
相关机构:燕山大学更多>>
发文基金:国家自然科学基金更多>>
相关领域:医药卫生自动化与计算机技术生物学更多>>

文献类型

  • 5篇期刊文章
  • 1篇会议论文

领域

  • 4篇医药卫生
  • 1篇生物学
  • 1篇自动化与计算...

主题

  • 3篇癫痫
  • 2篇信号
  • 2篇癫痫发作
  • 2篇脑电
  • 2篇脑电信号
  • 2篇贝叶斯
  • 1篇条件互信息
  • 1篇位同步
  • 1篇希尔伯特黄变...
  • 1篇相空间重构
  • 1篇相位
  • 1篇相位同步
  • 1篇麻醉
  • 1篇麻醉深度
  • 1篇经验模态分解
  • 1篇互信息
  • 1篇贝叶斯定理
  • 1篇贝叶斯估计
  • 1篇NEURAL...
  • 1篇PATH_P...

机构

  • 4篇燕山大学

作者

  • 4篇李小俚
  • 3篇欧阳高翔
  • 2篇崔素媛
  • 2篇李岩
  • 2篇关新平

传媒

  • 2篇中国生物医学...
  • 1篇科学通报
  • 1篇Journa...
  • 1篇Scienc...
  • 1篇2007中国...

年份

  • 2篇2008
  • 3篇2007
  • 1篇2006
5 条 记 录,以下是 1-6
排序方式:
基于希尔伯特黄熵的麻醉深度估计被引量:13
2008年
麻醉深度监测是外科手术中必不可少的步骤之一。目前已经提出多种监测麻醉深度的脑电信号分析方法,尤其熵方法得到了广泛的关注。提出一种新的麻醉深度监测方法-希尔伯特黄熵,先用经验模态分解—希尔伯特黄变换处理脑电信号获取希尔伯特黄边际谱,再根据香农熵定义得到希尔伯特黄熵。对19个接受吸入药物七氟醚麻醉的病人脑电信号的希尔伯特黄熵和时频均衡谱熵进行计算、测试和比较,结果表明:希尔伯特黄熵能够更准确的区分麻醉和清醒状态,更适合于麻醉深度监测。
李小俚崔素媛Sleigh J W
关键词:麻醉深度经验模态分解希尔伯特黄变换脑电信号
Solution to reinforcement learning problems with artificial potential field被引量:3
2008年
A novel method was designed to solve reinforcement learning problems with artificial potential field.Firstly a reinforcement learning problem was transferred to a path planning problem by using artificial potential field(APF),which was a very appropriate method to model a reinforcement learning problem.Secondly,a new APF algorithm was proposed to overcome the local minimum problem in the potential field methods with a virtual water-flow concept.The performance of this new method was tested by a gridworld problem named as key and door maze.The experimental results show that within 45 trials,good and deterministic policies are found in almost all simulations.In comparison with WIERING's HQ-learning system which needs 20 000 trials for stable solution,the proposed new method can obtain optimal and stable policy far more quickly than HQ-learning.Therefore,the new method is simple and effective to give an optimal solution to the reinforcement learning problem.
谢丽娟谢光荣陈焕文李小俚
基于脑电非线性动力学的癫痫发作分析
癫痫发作脑电信号分析是癫痫临床诊断的一个重要问题。为了更好地理解和控制癫痫发作, 一系列基于先进信号处理和动力学理论的方法被应用于分析癫痫脑电信号。本文我们提出了一系列癫痫发作检测、预测和控制的新方法,有助于我们更好地理...
欧阳高翔崔素媛李小俚
关键词:癫痫发作脑电信号
文献传递
基于EEG模糊相似性的癫痫发作预测被引量:11
2006年
本研究提出基于EEG序列模糊相似性指数方法预测癫痫发作。首先,结合复自相关法和Cao法对EEG序列进行了相空间重构;然后,计算相关积分时用Gaussian函数代替Heavyside函数,克服了Heavyside函数的刚性边界问题,使得计算相似性指数更加准确和可靠;最后,分析大鼠癫痫EEG信号,检测癫痫发作前期状态。分析结果表明模糊相似性指数方法能够比动态相似性指数方法获得更长的预测时间和更低的错误预测率。
李小俚欧阳高翔关新平李岩
关键词:癫痫发作相空间重构
Information flow among neural networks with Bayesian estimation被引量:1
2007年
Estimating the interaction among neural networks is an interesting issue in neuroscience. Some methods have been proposed to estimate the coupling strength among neural networks; however, few estimations of the coupling direction (information flow) among neural networks have been attempted. It is known that Bayesian estimator is based on a priori knowledge and a probability of event occurrence. In this paper, a new method is proposed to estimate coupling directions among neural networks with conditional mutual information that is estimated by Bayesian estimation. First, this method is applied to analyze the simulated EEG series generated by a nonlinear lumped-parameter model. In comparison with the conditional mutual information with Shannon entropy, it is found that this method is more successful in estimating the coupling direction, and is insensitive to the length of EEG series. Therefore, this method is suitable to analyze a short time series in practice. Second, we demonstrate how this method can be applied to the analysis of human intracranial epileptic electroencephalogram (EEG) recordings, and to indicate the coupling directions among neural networks. Therefore, this method helps to elucidate the epileptic focus localization.
LI Yan LI XiaoLi OUYANG GaoXiang GUAN XinPing
关键词:贝叶斯定理癫痫
基于贝叶斯估计的神经信息流被引量:1
2007年
判断神经网络之间的相互影响是一个重要的神经科学问题.目前已提出了多种成熟的方法计算神经网络之间的耦合强度,但是对于神经网络之间耦合方向(信息流)的研究还属于起步阶段.一般的香农熵计算方法仅仅利用了样本重复概率的统计信息,而贝叶斯估计则充分利用了整体先验知识和样本重复概率.基于最小平方误差的贝叶斯估计提出了一种新的基于信息论的相位耦合方向指数计算方法.经过集总参数神经网络模型所产生的仿真信号检验表明,提出的方法能够准确地判断两个系统间的耦合方向,并且减少了对数据长度的依赖性,使分析短时高噪的复杂生物信号成为可能.应用该新方法分析了癫痫病人临床信号,结果表明该方法能判断出癫痫发作时各区域之间的影响方向,并揭示了癫痫传播机制.
李岩李小俚欧阳高翔关新平
关键词:相位同步条件互信息贝叶斯估计
共1页<1>
聚类工具0