国家大学生创新性实验计划(CQUCX-G-2007-016)
- 作品数:6 被引量:24H指数:4
- 相关作者:裴军芳温玉锋蔡从中肖婷婷朱星键更多>>
- 相关机构:重庆大学更多>>
- 发文基金:重庆市自然科学基金教育部“新世纪优秀人才支持计划”教育部留学回国人员科研启动基金更多>>
- 相关领域:自动化与计算机技术理学一般工业技术金属学及工艺更多>>
- 基于拓扑结构的碱金属化合物摩尔磁化率的支持向量回归研究
- 2009年
- 基于经典电动力学导出的表征简单离子磁化率的磁性点价gi所构建的分子磁性连接性指数mF及45种碱金属化合物的摩尔磁化率χm的实测数据集,利用粒子群寻优的支持向量回归(SVR)方法,建立了基于0F和1F的碱金属化合物χm的预测模型,并与基于多元线性回归(MLR)模型的计算结果进行了比较.结果显示,基于9次交叉验证的SVR模型预测的平均绝对误差、平均相对误差绝对值以及均方根误差均比MLR模型小,表明SVR模型的回归预测能力优于MLR.研究表明,磁性连接性指数mF是一种合适的分子描述符,SVR是一种预测碱金属化合物χm的有效方法.
- 蔡从中庄魏萍温玉锋朱星键裴军芳肖婷婷
- 关键词:碱金属化合物支持向量回归
- 木材导热系数的支持向量回归预测被引量:7
- 2009年
- 根据木材在不同影响因素(密度、含水率和比重)下沿横纹方向(包括径向和弦向)的导热系数的实测数据集,应用基于粒子群算法(PSO)寻优的支持向量回归(SVR)方法,建立了木材沿不同方向的导热系数的预测模型,并与通过类比法(ANA)导出的理论模型和BP神经网络(BPNN)模型进行了比较。结果表明:基于相同的训练样本和检验样本,木材导热系数的SVR模型比其ANA模型或BPNN模型具有更高的预测精度;增加训练样本数有助于提高SVR预测模型的泛化能力;基于留一交叉验证法(LOOCV)的SVR模型预测的最大绝对百分误差(MPE)、平均绝对误差(MAE)和平均绝对百分误差(MAPE)均为最小。因此,SVR是一种预测木材导热系数的有效方法。
- 蔡从中温玉锋朱星键裴军芳肖婷婷
- 关键词:木材导热系数支持向量机粒子群算法
- 基于工艺参数的7005铝合金力学性能的支持向量回归预测被引量:11
- 2010年
- 根据7005铝合金在不同工艺参数(挤压温度、挤压速度、淬火方式和时效条件)下的力学性能(抗拉强度σb、屈服强度σ0.2和硬度HB)实测数据集,应用基于粒子群算法(PSO)寻优的支持向量回归(SVR)结合留一交叉验证(LOOCV)的方法,对7005铝合金力学性能进行建模和预测研究,并与偏最小二乘法(PLS)、反向传播人工神经网络(BPNN)和两者结合的PLS-BPNN模型的预测结果进行比较。结果表明:基于SVR-LOOCV法的预测精度最高,对3种力学性能(σb、σ0.2和HB)预测的均方根误差(RMSE)分别为4.5319MPa、14.5508MPa和HB1.4142,其平均相对误差(MRE)分别为0.72%、2.61%和0.66%,均比PLS、BPNN和PLS-BPNN方法预测的RMSE和MRE要小。
- 蔡从中温玉锋朱星键裴军芳王桂莲肖婷婷
- 关键词:7005铝合金力学性能支持向量机粒子群算法
- 选择性激光烧结成型件密度的支持向量回归预测被引量:4
- 2009年
- 根据不同工艺参数(层厚、扫描间距、激光功率、扫描速度、加工环境温度、层与层之间的加工时间间隔和扫描方式)下的选择性激光烧结成型件密度的实测数据集,应用基于粒子群算法寻优的支持向量回归(SVR)方法,建立了加工工艺参数与成型件密度间的预测模型,并与BP神经网络模型进行了比较.结果表明:基于相同的训练样本和检验样本,成型件密度的SVR模型比其BP神经网络模型具有更强的内部拟合能力和更高的预测精度;增加训练样本数有助于提高SVR预测模型的泛化能力;基于留一交叉验证法的SVR模型的预测误差最小.因此,SVR是一种预测选择性激光烧结成型件密度的有效方法.
- 蔡从中裴军芳温玉锋朱星键肖婷婷
- 关键词:选择性激光烧结支持向量机
- AlON-TiN复相材料合成工艺参数的支持向量回归分析被引量:2
- 2009年
- 根据在不同热压烧结工艺参数(包括TiN的含量、烧结温度和保温时间)下合成的AlON-TiN复相材料的抗弯强度实测数据集,应用基于粒子群算法寻优的支持向量回归(SVR)方法,建立了AlON-TiN复相材料在不同热压烧结工艺参数下抗弯强度的SVR预测模型,并与基于人工神经网络(ANN)模型的预测结果进行了比较.利用SVR预测模型并结合粒子群算法对AlON-TiN合成工艺参数进行了寻优和多因素分析.结果显示:对于相同的训练样本和检验样本,AlON-TiN复相材料抗弯强度的SVR模型比ANN模型具有更小的预测误差,表明SVR模型比ANN模型具有更强的预测能力.工艺参数寻优结果表明,当TiN质量分数为13.5%、烧结温度为1863.5℃和保温时间为5.8h时,可获得抗弯强度为555.452MPa的AlON-TiN复相材料.研究结果表明,该方法对于研发理想抗弯强度的AlON-TiN复相材料具有重要的理论指导意义和实用价值.
- 温玉锋蔡从中裴军芳朱星键肖婷婷王桂莲
- 关键词:抗弯强度支持向量回归
- R_2O-MO-Al_2O_3-SiO_2玻璃配方与热膨胀系数关系的支持向量回归研究被引量:7
- 2009年
- 不同配方的玻璃一般具有不同的热膨胀系数。根据R2O-MO-Al2O3-SiO2(R为碱金属元素,M为碱土金属元素)系统玻璃在不同氧化物组成(SiO2,MgO,CaO,SrO,BaO,Na2O和K2O)下的热膨胀系数实测数据集,应用基于粒子群算法(PSO)寻优的支持向量回归(SVR)方法,建立了玻璃的不同配方与其热膨胀系数关系的SVR预测模型,并与基于BPNN神经网络模型的预测结果进行了比较。结果表明:对于相同的训练样本和检验样本,支持向量回归的玻璃的热膨胀系数模型始终比BPNN模型具有更高的预测精度;增加训练样本数有助于提高所建SVR预测模型的泛化能力;基于留一交叉验证法(LOOCV)的SVR预测的均方根误差(RMSE)、平均绝对误差(MAE)和平均绝对百分误差(MAPE)均为最小。本研究表明:SVR是一种预测不同配方玻璃的热膨胀系数的有效方法。
- 温玉锋蔡从中裴军芳朱星键肖婷婷
- 关键词:热膨胀系数