The molecular dissociation energies of some electronic states of hydride and N2 molecules were studied using a parameter-free analytical formula suggested in this study and the algebraic method (AM) proposed recently. The results show that the accurate AM dissociation energies DeAM agree excellently with experimental dissociation energies Deexpt, and that the dissociation energy of an electronic state such as the 23Δg state of 7Li2 whose experimental value is not available can be predicted using the new formula.
SUN WeiGuo1, FAN QunChao1 & REN WeiYi1,2 1 Institute of Physics, Sichuan University, Chengdu 610065, China
An alternative expression for photoionization cross-section of atoms or molecules and a dielectric influence function (DIF) in a high-density system proposed recently are used to study the photoionization cross-sections of solid silver. It is suggested that a density turning point (DTP) of a photoionized system may be viewed as the critical point where the photoionization properties of atoms in a real system may have a notable change. The results show that the present theoretical photoionization cross-sections are in good agreement with the experimental results of a silver crystal both in structure and in magnitude.