We study the response function of the neutron wall for 300 MeV neutrons with GEANT4 simulations. The methods to find the correct neutron incident position and time are discussed, and the neutron emission angle and energy are reconstructed and compared with the simulation.
The model of three-body Borromean halo nuclei breakup was described by using standard phase space distributions and the Monte Carlo simulation method was established to resolve the detection problem of two neutrons produced from breakup reaction on the neutron wall detector. For 6He case, overall resolution ~rEk for the Oaussiaal part of the detector response and the detection efficiency including solid angle acceptance with regard to the excitation energy Ek are obtained by the simulation of two neutrons from 6He breakup into the neutron wall. The effects of the algorithm on the angular and energy correlations of the fragments are briefly discussed.