Based on atmospheric chemical kinetics, the rate constant of overall pseudo-first order oxidation re-moval of gaseous pollutants (Kpor,T) is proposed to characterize the atmospheric oxidation capacity in troposphere. Being a quantitative parameter, Kpor,T can be used to address the issues related to at-mospheric oxidation capacity. By applying this method, the regional oxidation capacity of the atmos-phere in Pearl River Delta (PRD) is numerically simulated based on CBM-IV chemical mechanism. Re-sults show the significant spatio-temporal variation of the atmospheric oxidation capacity in PRD. It is found that OH initiated oxidations, heterogeneous oxidation of SO2, and photolysis of aldehydes are the three most important oxidation processes influencing the atmospheric oxidation capacity in PRD.
Perylene tetracarboxylic diimide (PTCDI),widely used in organic photovoltaic devices,is an n-type semiconductor with strong absorption in the visible-light spectrum.There has been almost no study of the PTCDI-sensitized TiO2 composite used to photocatalytically degrade pollutants.In this study,PTCDIand copper phthalocyanine tetrasulfonic acid (CuPcTs)-sensitized TiO2 composites were prepared using a hydrothermal method.The morphologies and structures of the two composites were characterized by X-ray diffraction,transmission electron microscopy,ultraviolet-visible spectroscopy,and fluorescence spectroscopy.The visible-light photocatalytic activities of the composites were evaluated using the degradation of rhodamine B as a model reaction.Results showed that dye-sensitized TiO2 samples had a wider absorption spectrum range and higher visiblelight photocatalytic activity compared to TiO2 samples.The double dye-sensitized (or co-sensitized) TiO2 composite with efficient electron collection exhibited higher photocatalytic activity than did the single dye-sensitized TiO2 composite.The electron transfer processes of single and double dye-sensitized TiO2 composites were illustrated according to band theory.
SHANG Jing,ZHAO FengWei,ZHU Tong & LI Jia State Key Joint Laboratory of Environmental Simulation and Pollution Control