In order to improve the accuracy of biophysical parameters retrieved from remotely sensing data, a new algorithm was presented by using spatial contextual to estimate canopy variables from high-resolution remote sensing images. The developed algorithm was used for inversion of leaf area index (LAI) from Enhanced Thematic Mapper Plus (ETM+) data by combining with optimization method to minimize cost functions. The results show that the distribution of LAI is spatially consistent with the false composition imagery from ETM+ and the accuracy of LAI is significantly improved over the results retrieved by the conventional pixelwise retrieval methods, demonstrating that this method can be reliably used to integrate spatial contextual information for inverting LAI from high-resolution remote sensing images.
Leaf area index (LAI) is an important parameter in monitoring crop growth. One of the methods for retrieving LAI from remotely sensed observations is through inversion of canopy reflectance models. Many model inversion methods fail to account for variable LAI values at different crop growth stages. In this research, we use the crop growth model to describe the LAI changes with crop growth, and consider a priori LAI values at different crop growth stages as constraint information. The key approach of this research is to assimilate multiple canopy reflectance values observed at different growth stages and a priori LAI values into a coupled crop growth and radiative transfer model sequentially using a variational data assimilation algorithm. Adjoint method is used to minimize the cost function. Any other information source can be easily incorporated into the inversion cost function. The validation results show that the time series of MODIS canopy reflectance can greatly reduce the uncertainty of the inverted LAI values. Compared with MODIS LAI product at Changping and Shunyi Counties of Beijing, this method has significantly improved the estimated LAI temporal profile.
WANG DongWei1,2,3, WANG JinDi1,2 & LIANG ShunLin4 1 State Key Laboratory of Remote Sensing Science, Jointly Sponsored by Beijing Normal University and Institute of Remote Sensing Applications, CAS, Beijing 100875, China