Owing to the Benjamin-Feir instability, the Stokes wave train experiences a modulation-demodulation process, and presents a recurrence characteristics. Stiassnie and Shemer researched the unstable evolution process and provided a theoretical formulation for the recurrence period in 1985 on the basis of the nonlinear cubic Schrodinger equation (NLS). However, NLS has limitations on the narrow band and the weak nonlinearity. The recurrence period is re-investigated in this paper by using a highly efficient High Order Spectral (HOS) method, which can be applied for the direct phase- resolved simulation of the nonlinear wave train evolution. It is found that the Stiassnie and Shemer's formula should be modified in the cases with most unstable initial conditions, which is important for such topics as the generation mechanisms of freak waves. A new recurrence period formula is presented and some new evolution characteristics of the Stokes wave train are also discussed in details.