In this paper, we study the positive solutions for a class of integral systems and prove that all the solutions are radially symmetric and monotonically decreasing about some point. Moreover, we also obtain the uniqueness result for a special case. We use a new type of moving plane method introduced by Chen-Li-Ou [1]. Our new ingredient is the use of Hardy-Littlewood-Sobolev inequality instead of Maximum Principle.
In this paper, the Uzawa iteration algorithm is applied to the Stokes problem with nonlinear slip boundary conditions whose variational formulation is the variational inequality of the second kind. Firstly, the multiplier in a convex set is introduced such that the variational inequality is equivalent to the variational identity. Moreover, the solution of the variational identity satisfies the saddle-point problem of the Lagrangian functional ζ. Subsequently, the Uzawa algorithm is proposed to solve the solution of the saddle-point problem. We show the convergence of the algorithm and obtain the convergence rate. Finally, we give the numerical results to verify the feasibility of the Uzawa algorithm.
The gradient blowup of the equation ut = △u + a(x)|△u|p + h(x), where p 〉 2, is studied. It is shown that the gradient blowup rate will never match that of the self-similar variables. The exact blowup rate for radial solutions is established under the assumptions on the initial data so that the solution is monotonically increasing in time.
Abstract In this paper, the blow-up rate is obtained for a porous medium equation with a nonlinear gradient term and a nonlinear boundary flux. By using a scaling method and regularity estimates of parabolic equations, the blow-up rate determined by the interaction between the diffusion and the boundary flux is obtained. Compared with previous results, the gradient term, whose exponent does not exceed two, does not affect the blow-up rate of the solutions.