We performed detailed temperature-dependent optical measurements on optimally doped Ba0.6K0.4Fe2As2 single crystal, We examine the changes of the in-plane optical conductivity spectral weight in the normal state and the evolution of the superconducting condensate in the superconducting state. In the normal state, the low-frequency spectral weight shows a metallic response with an arctan (T) dependence, indicating a T-linear scattering rate behavior for the carriers. A high energy spectral weight transfer associated with the Hund's coupling occurs from the low frequencies below 4000 cm^-1 5000 cm^-1 to higher frequencies up to at least 104 cm^-1. Its temperature dependence analysis suggests that the Hund's coupling strength is continuously enhanced as the temperature is reduced. In the superconducting state, the FGT sum rule is conserved according to the spectral weight estimation within the conduction bands, only about 40% of the conduction bands participates in the superconducting condensate indicating that Ba0.6K0.4Fe2As2 is in dirty limit.
We present magnetotransport studies on a series of BaFe2_xNixAs2 (0.03 〈 x 〈 0.10) single crystals. In the un- derdoped (x = 0.03) non-superconducting sample, the temperature-dependent resistivity exhibits a peak at 22 K, which is associated with the onset of filamentary superconductivity (FLSC). FLSC is suppressed by an external magnetic field in a manner similar to the suppression of bulk superconductivity in an optimally-doped (x = 0.10) compound, suggesting the same possible origin as the bulk superconductivity. Our magnetoresistivity measurements reveal that FLSC persists up to the optimal doping and disappears in the overdoped regime where the long-range antiferromagnetic order is completely suppressed, pointing to a close relation between FLSC and the magnetic order.
Dear Editors, Tungsten ditelluride (WTe2) is a layered transition-metal dichalcogenide (TMD). The tungsten layers are clipped by adjacent chalcogenide layers. The sandwich structure stacks along the c-axis with Van Der Waals bonding between layers. Particularly, tungsten chains are formed along the a-axis within the dichalcogenide layers.
The response of superconducting Nb films with a diluted triangular and square array of holes to a perpendicular magnetic field are investigated.Due to small edge-to-edge separation of the holes,the patterned films are similar to multi-connected superconducting islands.Two regions in the magnetoresistance R(H) curves can be identified according to the field intervals of the resistance minima.Moreover,in between these two regions,variation of the minima spacing was observed.Our results provide strong evidence of the coexistence of interstitial vortices in the islands and fluxoids in the holes.
The response of superconducting Nb films with a diluted triangular and square array of holes to a perpendicular magnetic field are investigated. Due to small edge-to-edge separation of the holes, the patterned films are similar to multi-connected superconducting islands. Two regions in the magnetoresistance R(H) curves can be identified according to the field intervals of the resistance minima. Moreover, in between these two regions, variation of the minima spacing was observed. Our results provide strong evidence of the coexistence of interstitial vortices in the islands and fluxoids in the holes.
We present an infrared spectroscopy study of charge dynamics in CaCo_2As_2 single crystal. In this material, the optical conductivity can be described by two Drude components with different scattering rates(1/τ): a broad incoherent background and a narrow Drude component. By monitoring the temperature dependence, we find that only the narrow Drude component is temperature-dependent and determines the transport properties. Especially a Fermi liquid behavior of carriers is revealed by the T^2 behavior in the dc resistivity ρ_n and scattering rate 1/τ_n, indicating a coherent nature of quasiparticles in the narrow Drude subsystem.
We measured the infrared reflectivity of BaFe1.904Ni0.096As2 single crystal from room temperature down to 20 K. Two Drude terms and a Lorentz term well describe the real part of the optical conductivity σ1 (ω). We fit the reciprocal of static optical conductivity 1/σ1(0) by the power law ρ (T)=ρo+ATn with n= 1.6. The "broad" Drude component exhibits an incoherent background with a T-independent scattering rate 1/τb, while the other "narrow" one reveals a T-quadratic scattering rate 1/τn, indicating a hidden Fermi-liquid behavior in BaFe1.904Nio.096As2 compound.