Three-dimensional topological insulators are a new class of quantum matter which has interesting connections to nearly all main branches of condensed matter physics. In this article, we briefly review the advances in the field effect control of chemical potential in three-dimensional topological insulators. It is essential to the observation of many exotic quantum phenomena predicted to emerge from the topological insulators and their hybrid structures with other materials. We also describe various methods for probing the surface state transport. Some challenges in experimental study of electron transport in topological insulators will also be briefly discussed.
The recent discovery of three-dimensional(3D) topological insulators(TIs) has provided a fertile ground for obtaining further insights into electron localization in condensed matter systems.In the past few years,a tremendous amount of research effort has been devoted to investigate electron transport properties of 3D TIs and their low dimensional structures in a wide range of disorder strength,covering transport regimes from weak antilocalization to strong localization.The knowledge gained from these studies not only offers sensitive means to probe the surface states of 3D TIs but also forms a basis for exploring novel topological phases.In this article,we briefly review the main experimental progress in the study of the localization in 3D TIs,with a focus on the latest results on ultrathin TI films.Some new transport data will also be presented in order to complement those reported previously in the literature.