The potential field determined based on the fictitious compress recovery approach is influenced by the errors contained in the boundary (the Earth's surface or the surface corresponding to the satellite altitude) values. Given the boundary value with definite accuracy, the accuracy of the field determined based on the fictitious compress recovery approach is estimated, and it is theoretically shown that the determined field has the same accuracy level as the given boundary value.
The problem of separating gravitation from inertia is discussed in very general sense, and the conclusion is positive: man can separate gravitation from inertia, if various observation techniques are applied for. The accelerometer's position problem in satellite gravimetry is investigated, and the additional acceleration effect due to the position error of an instrument as well as the difference between the mass center and the gravity center is explored.
SHEN Wenbin NING Jinsheng Key Lab. of Geospace Environment and Geodesy, MEC