Using numerical method, we investigate whether periodic, quasiperiodic, and chaotic breathers are supported by the two-dimensional discrete Fermi-Pasta-Ulam (FPU) lattice with linear dispersion term. The spatial profile and time evolution of the two-dimensional discrete fl-FPU lattice are segregated by the method of separation of variables, and the numerical simulations suggest that the discrete breathers (DBs) are supported by the system. By introducing a periodic interaction into the linear interaction between the atoms, we achieve the coupling of two incommensurate frequencies for a single DB, and the numerical simulations suggest that the quasiperiodic and chaotic breathers are supported by the system, too.