The ductile shearing zones of coal seams in a brittle deformation domain in super-ficial lithosphere are put forward based on the study on bedding shearing and ductile rheology of coal seams. The macrocosmic and microcosmic characteristics include wrinkle fold, mymonitized zones and ductile planar structure of coal seams, etc., while the microcosmic characteristics may also include different optic-axis fabrics and the anisotropy of vitrinite reflectance as well as the change of chemical structure and organic geochemistry components. The forming mechanism is analyzed and the strain environment of ductile shearing zones of coal seams discussed. The result indicates that, in the superficial brittle deformation domain, the coal seams are easy to be deformed, resulting in not only brittle deformation but also ductile shearing deformation under the action of force. Because of simple shearing stress, the interlayer gliding or ductile rheology may take place between coal seams and wall rocks. Therefore, many ductile shearing zones come into being in superficial lithosphere (<5 km). The research on ductile shearing zone of brittle de-formation domain in superficial lithosphere is significant not only theoretically for the study of ductile shearing and ductile rheology of the lithosphere but also practically for the structural movement of coal seams, the formation and accumulation of coal-bed methane, and the preven-tion and harness of gas burst in coal mine.
JU Yiwen1,2, WANG Guiliang2, JIANG Bo2 & HOU Quanlin1 1. Graduate School, Chinese Academy of Sciences, Beijing 100039, China
High-resolution 13C Nuclear Magnetic Resonance (NMR) spectra of different kinds of tectonic coals were obtained using the NMR (CP/MAS+TOSS) method. On the basis of this, after simulation synthesis and division of spectra, the relative contents of carbon functional groups were calculated. Combined with results of Ro, max, XRD testing and element analysis, stress effects on the composition of macromolecular structures in tectonic coals were studied further. The results showed that Ro, max was not only the important index for describing coal rank, but was also effective for estimating the stress effect of tectonic coals. Under tectonic stress ac- tion, Ro, max was the most direct indicator of the coal structure and chemical components. Changes in the stacking Lc of the coal basic structure unit (BSU) and La/Lc parameters could distinguish the temperature and stress effects on metamorphic-deformed environments, and re- flected the degree of structural deformation. Therefore, on the whole, Lc and La/Lc can be used to index of the degree of structural deformation of tectonic coals. In different metamorphic and de- formed environments, different kinds of tectonic coals are formed under structural stress. The changes in characteristics of the macromolecular structure and chemical composition are such that as the increase in structural deformation becomes stronger, from the brittle deformation coal to ductile deformation coal, the ratio of width at the half height of the aromatic carbon and ali- phatic carbon peaks (Hfa/Hfal ) was increased. As carbon aromaticity was raised further, carbon aliphaticity reduced obviously and different compositions of macromolecular structure appeared as a jump and wave pattern except for in wrinkle structure coal, which might result chiefly from stress effects on the macromolecular structure of different kinds of tectonic coals. The macro- moecular changes of wrinkle structure coal are reflected mainly on physical structure. In the metamorphic and deformed environments of the middle and hi
JU Yiwen1,2, JIANG Bo1, HOU Quanlin2, WANG Guiliang1 & NI Shanqin2 1. College of Mineral Resource and Geosciences, China University of Mining and Technology, Xuzhou 221008, China