Transparent conductive oxide (TCO) thin film is a kind of functional material which has potential applications in solar cells and atomic oxygen (AO) resisting systems in spacecrafts. Of TCO, ZnO:Al (ZAO) and In2O3:Sn (ITO) thin films have been widely used and investigated. In this study, ZAO and ITO thin films were irradiated by AO with different amounts of fluence. The as-deposited samples and irradiated ones were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Hall-effect measurement to investigate the dependence of the structure, morphology and electrical properties of ZAO or ITO on the amount of fluence of AO irradiation. It is noticed that AO has erosion effects on the surface of ZAO without evident influences upon its structure and conductive properties. Moreover, as the amount of AO fluence rises, the carrier concentration of ITO decreases causing the resistivity to increase by at most 21.7%.
Some fundamental studies on the preparation, structure and optical properties of NbN films were carried out. NbN thin films were deposited by DC reactive magnetron sputtering at different N2 partial pressures and different substrate temperatures ranging from -50℃ to 600℃. X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM) were employed to characterize their phase components, microstructures, grain sizes and surface morphology. Optical properties inclusive of refractive indexes, extinction coefficients and transmittance of the NbN films under different sputtering conditions were measured. With the increase in the N2 partial pressure, 6-NbN phase structure gets forming and the grain size and lattice constant of the cubic NbN increasing. The deposited NbN film has relatively high values of refractive index and extinction coefficient in the wavelength ranging from 240 nm to 830 nm. Substrate temperature exerts notable influences on the microstructure and optical transmittance of the NbN films. The grain sizes of the 6-NbN film remarkably increase with the rise of the substrate temperature, while the transmittance of the films with the same thickness decreases. Ultra-fine granular film with particle size of several nanometers forms when the substrate is cooled to -50℃, and a remarkable augmentation of transmittance could be noticed under so low a temperature.
DU Xin-kangWANG Tian-minWANG CongCHEN Bu-liangZHOU Long
Based on the cermet double layer structure, Nb-NbN multi-layer films for solar selective coatings were deposited by direct current reactive magnetron sputtering. The Nb/Nb-NbN/Al2O3 trilayered structure was deposited on a stainless steel (SS) substrate by using a single niobium target. The expected components were adjusted by changing the gas flowing ratios of Ar: N2. The Al2O3 antireflective layer on the top of the film was produced by r. f. magnetron sputtering using Al2O3 ceramic target. A solar absorptivity of 0.94 and a normal emissivity of 0.16 at room temperature have been achieved for the coating. Thermal vacuum aging to the samples was carried out at 350 and 500 ℃ for 1 h. The results show a good thermal stability. Microstructure and its dependence on temperature of the Nb, NbN and Nb-NbN single layers were investigated, respectively.
WANG Cong DU Xinkang WANG Tianmin ZHOU Long RU Ning CHEN Buliang