Pitting corrosion and crevice corrosion behaviors of high nitrogen austenitic stainless steels (HNSS) were investigated by electrochemical and immersion testing methods in chloride solution, respectively. The chemical constitution and composition in the depth of passive films formed on HNSS were analyzed by X-ray photoelectron spectrum (XPS). HNSS has excellent pitting and crevice corrosion resistance compared to 316L stainless steel. With increasing the nitrogen content in steels, pitting potentials and critical pitting temperature (CPT) increase, and the maximum, average pit depths and average weight loss decrease. The CPT of HNSS is correlated with the alloying element content through the measure of alloying for resistance to corrosion (MARC). The MARC can be expressed as an equation of CPT=2.55MARC-29. XPS results show that HNSS exhibiting excellent corrosion resistance is attributed to the enrichment of nitrogen on the surface of passive films, which forms ammonium ions increasing the local pH value and facilitating repassivation, and the synergistic effects of molybdenum and nitrogen.
Hua-bing Li Zhou-hua Jiang Yan Yang Yang Cao Zu-rui Zhang
The intergranular corrosion (IGC) behavior of high nitrogen austenitic stainless steel (HNSS) sensitization treated at 650-950℃ was investigated by the double loop electrochemical potentiodynamic reactivation (DL-EPR) method. The effects of the electrolytes, scan rate, sensitizing temperature on the susceptibility to IGC of HNSS were examined. The results show that the addi-tion of NaCl is an effective way to improve the formation of the cracking of a passive film in chromium-depleted zones during the reactivation scan. Decreasing the scan rate exhibits an obvious effect on the breakdown of the passive film. A solution with 2 mol/L H2SO4+1 mol/L NaCl+0.01 mol/L KSCN is suitable to check the susceptibility to IGC of HNSS at a sensitizing temperature of 650-950℃ at a suitable scan rate of 1.667 mV/s. Chromium depletion of HNSS is attributed to the precipitation of Cr2N which results in the susceptibility to IGC. The synergistic effect of Mo and N is suggested to play an important role in stabilizing the passive film to prevent the attack of IGC.
Hua-bing Li Zhou-hua Jiang Zu-rui Zhang Yang Cao Yan Yang
The microstructural evolution of 18Crl 8Mn2Mo0.77N high nitrogen austenitic stainless steel in aging treatment was investigated by optical microscopy (OM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results show that hexagonal intergranular and cellular Cr2N with a=0.478 nm and c=0.444 nm and body-centered cubic intermetaUic X phase with a=0.892 nm precipitate gradually in the isothermal aging treatment. The matrix nitrogen depletion due to the intergranular Cr2N precipitation induces the decay of Vickers hardness, and the formation of cellular Cr2N and X phase causes the increase in the values. The impact toughness presents a monotonic decrease and SEM morphologies show the leading brittle intergranular fracture. The tensile strength and elongation deteriorate obviously except for the sample aged for 1 h in yield strength. Stress concentration occurs when the matrix dislocations pile up at the pre- cipitation and matrix interfaces, and the interracial dislocations may become precursors to the misfit dislocations, which can form small cleavage steps and accelerate the formation of cracks.
Zhou-hua Jiang Zu-rui Zhang Hua-bing Li Zhen Li Qi-feng Ma
A simple and feasible method for the production of high nitrogen austenitic stainless steels involves nitrogen gas alloying and adding nitrided ferroalloys under normal atmospheric conditions. Alloying by nitrogen gas bubbling in Fe-Cr-Mn-Mo series alloys was carried out in MoSi2 resistance furnace and air induction furnace under normal atmospheric conditions. The results showed that nitrogen alloying could be accelerated by increasing nitrogen gas flow rate, prolonging residence time of bubbles, increasing gas/molten steel interfaces, and decreasing the sulphur and oxygen contents in molten steel. Nitrogen content of 0.69% in 18Crl8Mn was obtained using air induction furnace by bubbling of nitrogen gas from porous plug. In addition, the nickel-free, high nitrogen austenitic stainless steels with sound and compact macrostructure had been produced in the laboratory using vacuum induction furnace and electroslag remelting furnace under nitrogen atmosphere by the addition of nitrided alloy with the maximum nitrogen content of 0.81%. Pores were observed in the ingots obtained by melting and casting in vacuum induction furnace with the addition of nitrided ferroalloys and under nitrogen atmosphere. After electroslag remelting of the cast ingots, they were all sound and were free of pores. The yield of nitrogen increased with the decrease of melting rate in the ESR process. Due to electroslag remelting under nitrogen atmosphere and the consequential addition of aluminum as deoxidizer to the slag, the loss of manganese decreased obviously. There existed mainly irregular Al2O3 inclusions and MnS inclusions in ESR ingots, and the size of most of the inclusions was less than 5 um. After homogenization of the hot rolled plate at 1 150℃ × 1 h followed by water quenching, the microstructure consisted of homogeneous austenite.
LI Hua-bing JIANG Zhou-hua SHEN Ming-hui YOU Xiang-mi
The fine grained structures of nickel-free high nitrogen austenitic stainless steels had been obtained by means of cold rolling and subsequent annealing. The relationship between microstructure and mechanical properties and gain size of nickel-free high nitrogen austenitic stainless steels was examined. High strength and good ductility of the steel were found. In the grain size range, the Hall-Petch dependency for yield stress, tensile strength, and hardness was valid for grain size ranges for the nickel-free high nitrogen austenitic stainless steel. In the present study, the ductility of cold rolled nickel-free high nitrogen austenitic stainless steel decreased with annealing time when the grain size was refined. The fracture surfaces of the tensile specimens in the grain size range were covered with dimples as usually seen in a ductile fracture mode.