A subgroup A of a p-group G is said to be soft in G if CG(A) = A and |NG(A)/A| = p. In this paper we determined finite p-groups all of whose maximal abelian subgroups are soft; see Theorem A and Proposition 2.4.
QU HaiPeng Department of Mathematics, Shanxi Normal University, Linfen 041004, China
Let G be a group of order pn, p a prime. For 0 m n, sm(G) denotes the number of subgroups of order pm of G. Loo-Keng Hua and Hsio-Fu Tuan had ever conjectured: for an arbitrary finite p-group G, if p > 2, then sm(G) ≡ 1, 1+p, 1+p+p2 or 1+p+2p2(mod p3). The conjecture has a negative answer. In this paper, we further investigate the conjecture and propose two new conjectures.