We numerically study the pulse compression approaches based on atomic or molecular gases in a hollow-core fiber.From the perspective of self-phase modulation(SPM), we give the extensive study of the SPM influence on a probe pulse with molecular phase modulation(MPM) effect. By comparing the two compression methods, we summarize their advantages and drawbacks to obtain the few-cycle pulses with micro- or millijoule energies. It is also shown that the double pump-probe approach can be used as a tunable dual-color source by adjusting the time delay between pump and probe pulses to proper values.
We develop a splicing technology of Ti:sapphire crystals for a high-energy chirped pulse amplifier laser system that can suppress the parasitic lasing to improve the amplification efficiency compared to a large-size single Ti:sapphire crystal amplifier. Theoretical investigations on the characteristics of the amplifier with four splicing Ti:sapphire crystals,such as parasitic-lasing suppression and amplification efficiencies, are carried out. Some possible issues resulting from this splicing technology, including spectral modulation, stretching or splitting of the temporal profile, and the sidelobe generation in the spatial domain(near field and far field), are also investigated. Moreover, the feasibility of the splicing technology is preliminarily demonstrated in an experiment with a small splicing Ti:sapphire crystals amplifier. The temporal profile and spatial distribution of the output pulse from the splicing Ti:sapphire crystal amplifier are discussed in relation to the output pulse from a single Ti:sapphire crystal amplifier.
A semi-classical model is utilized to explain the dissociation control of the hydrogen molecular ion (H^-). By ana- lyzing the curve of the dissociation asymmetry parameter as a function of the time delay between the exciting and steering pulses, we find that the dissociation control is dependent not only on the peak intensity and direction of the electric field of the steering pulse, but also on the peak intensity of the exciting pulse.
A passively Q-swithched mode-locked (QML) Tm:LiLuF4 (LLF) laser with a MoS2 saturable absorber (SA) is demonstrated for the first time, to our best knowledge. For the Q-switching mode, the maximum average output power and Q-switched pulse energy are 583 mW and 41.5 μJ, respectively. When the absorbed power is greater than 7.4 W, the passively QML pulse is formed, corresponding to an 83.3-MHz frequency. The modulation depth in Q-switching envelopes is approximately 50%. Results prove that MoS2 is a promising SA for Q-switched and QML solid-state lasers.
We theoretically study the field-free molecular orientation induced by a three-color laser field. The three-color laser field with a large asymmetric degree can effectively enhance the molecular orientation. In particular, when the intensity ratio of the three-color laser field is tuned to a proper value of I3: I2: I1= 0.09 : 0.5 : 1, the molecular orientation can be improved by - 20% compared with that of the two-color laser field at intensity ratio I2: I1= 1 : 1 for the same total laser intensity of 2×10^13W/cm^2. Moreover, we investigate the effect of the carrier-envelope phase(CEP) on the molecular orientation and use the asymmetric degree of the laser field to explain the result. We also show the influences of the laser intensity, rotational temperature, and pulse duration on the molecular orientation. These results are meaningful for the theoretical and experimental studies on the molecular orientation.
We experimentally investigate the high-order harmonic generation in argon gas cell driven by a multi-cycle broadband infrared laser pulse from a tunable optical-parametric-amplifier (OPA) source. The generation of high-order harmonic continuum with the cut-off photon energy up to 110 eV is observed by tuning the chirp of the 800-nm laser pulse which pumps OPA source. The generation of harmonic continuum is understood in terms of the two-hump structure of the OPA output spectrum and the optimal relative phase of the two humps. The demonstrated scheme is of importance for the generation of extreme ultraviolet (XUV) continuum at higher photon energy region.
The evolution of terahertz (THz) waveform in air plasma driven by low-energy few-cycle laser pulses is investigated to improve the accuracy of the carrier envelope phase (CEP) determination. Based on the transient photocurrent model, a balanced spatial distribution of the Kerr and free-electron effects in the plasma is found at 109 μJ input energy. THz inversion occurs only once at the initial CEP of 0.5π, in which high-precision measurement of the CEP of few-cycle laser pulses is achieved.
Electron localization in the dissociation of the symmetric linear molecular ion H3-(2+) is investigated. The numerical simulation shows that the electron localization distribution is dependent on the central frequency and peak electric field amplitude of the external ultrashort ultraviolet laser pulse. When the electrons of the ground state are excited onto the 2pσ-2Σu-+ by a one-photon process, most electrons of the dissociation states are localized at the protons on both sides symmetrically. Almost no electron is stabilized at the middle proton due to the odd symmetry of the wave function. With the increase of the frequency of the external ultraviolet laser pulse, the electron localization ratio of the middle proton increases, for more electrons of the ground state are excited onto the higher 3pσ-2Σu-+ ustate. 50.9% electrons of all the dissociation events can be captured by the middle Coulomb potential well through optimizing the central frequency and peak electric field amplitude of the ultraviolet laser pulse. Besides, a direct current(DC) electric field can be utilized to control the electron motions of the dissociation states after the excitation of an ultraviolet laser pulse, and 68.8% electrons of the dissociation states can be controlled into the middle proton.
We present a velocity-gauge model for the generation of even-order high harmonics, and reveal that the even-order harmonics originate from the multiple-step transitions among the energy bands in momentum space, while the odd-order harmonics are mainly from direct transitions. The lower valence band is found vital for the generation of even harmonics. Relative intensity of even-order harmonics versus the odd orders is calculated and shows a growing trend as the laser field amplitude increases.
The molecular dissociation with a two-laser-pulse scheme is theoretically investigated for the hydrogen molecular ion(H2^+) and its isotopes(HD^+and HT^+). The terahertz pulse is used to steer the electron motion after it has been excited by an ultrashort ultraviolet laser pulse and an unprecedented electron localization ratio can be achieved. With the coupled equations, the mass effect of the nuclei on the effective time of the electron localization control is discussed.