Tumor suppressor p53 is the most frequently mutated gene in human tumors. Meanwhile, under stress conditions, p53 also acts as a transcription factor, regulating the expression of a series of target genes to maintain the integrity of genome. The target genes of p53 can be classified into genes regulating cell cycle arrest, genes involved in apoptosis, and genes inhibiting angiogenesis, p53 protein contains a transactivation domain, a sequence-specific DNA binding domain, a tetramerization domain, a non-specific DNA binding domain that recognizes damaged DNA, and a later identified proline-rich domain. Under stress, p53 proteins accumulate and are activated through two mechanisms. One, involving ataxia telangiectasia-mutated protein (ATM), is that the interaction between p53 and its down-regulation factor murine double minute 2 (MDM2) decreases, leading to p53 phosphorylation on Serl 5, as determined by the post-translational mechanism; the other holds that p53 increases and is activated through the binding of ribosomal protein L26 (RPL26) or nucleolin to p53 mRNA 5' untranslated region (UTR), regulating p53 translation. Under hypoxia, p53 decreases transactivation and increases transrepression. The mutations outside the DNA binding domain of p53 also contribute to tumor progress, so further studies on p53 should also be focused on this direction. The subter- ranean blind mole rat Spalax in Israel is a good model for hypoxia-adaptation. The p53 of Spalax mutated in residue 172 and residue 207 from arginine to lysine, conferring it the ability to survive hypoxic conditions. This model indicates that p53 acts as a master gene of diversity formation during evolution.
High-altitude hypoxia can induce physiological dysfunction and mountain sickness,but the underlying mechanism is not fully understood.Corticotrophin-releasing factor(CRF) and CRF type-1 receptors(CRFR1) are members of the CRF family and the essential controllers of the physiological activity of the hypothalamo-pituitary-adrenal(HPA) axis and modulators of endocrine and behavioral activity in response to various stressors.We have previously found that high-altitude hypoxia induces disorders of the brain-endocrine-immune network through activation of CRF and CRFR1 in the brain and periphery that include activation of the HPA axis in a time-and dose-dependent manner,impaired or improved learning and memory,and anxiety-like behavioral change.Meanwhile,hypoxia induces dysfunctions of the hypothalamo-pituitary-endocrine and immune systems,including suppression of growth and development,as well as inhibition of reproductive,metabolic and immune functions.In contrast,the small mammals that live on the Qinghai-Tibet Plateau alpine meadow display low responsiveness to extreme high-altitudehypoxia challenge,suggesting well-acclimatized genes and a physiological strategy that developed during evolution through interactions between the genes and environment.All the findings provide evidence for understanding the neuroendocrine mechanisms of hypoxia-induced physiological dysfunction.This review extends these findings.