This paper presents a theoretical study on the electrical and optical properties of mid-infrared type-II InAs/GaSb superlattices with different beryllium concentrations in the InAs layer of the active region. Dark current, resistancearea product, absorption coefficient and quantum efficiency characteristics are thoroughly examined. The superlattice is residually n-type and it becomes slightly p-type by varying beryllium-doping concentrations, which improves its electrical performances. The optical performances remain almost unaffected with relatively low p-doping levels and begin to deteriorate with increasing p-doping density. To make a compromise between the electrical and optical performances, the photodetector with a doping concentration of 3 ×10^15 cm-3 in the active region is believed to have the best overall performances.
A subwavelength plasmonic indented waveguide with an active InGaAsP core is proposed.The characteristics of the gap plasmon mode and gain required for lossless propagation are investigated and analyzed by the finite element method.We numerically calculate the normalized mode areas and percentages of energy confined in InGaAsP and metal for plasmonic nanolaser applications.It is shown that the indentation of the sidewalls has an optimal value for which the lasing threshold gain is minimal.The structure could enable low-threshold subwavelength lasing and applications for optoelectronic integrated circuits.