您的位置: 专家智库 > >

国家自然科学基金(21276078)

作品数:12 被引量:43H指数:4
相关作者:王振雷王昕田亮祁荣宾汪世杰更多>>
相关机构:华东理工大学上海交通大学中国石化上海石油化工股份有限公司更多>>
发文基金:国家自然科学基金上海市教育委员会重点学科基金上海市自然科学基金更多>>
相关领域:自动化与计算机技术化学工程石油与天然气工程环境科学与工程更多>>

文献类型

  • 12篇期刊文章
  • 2篇会议论文

领域

  • 6篇自动化与计算...
  • 5篇化学工程
  • 3篇石油与天然气...
  • 1篇天文地球
  • 1篇环境科学与工...
  • 1篇理学

主题

  • 4篇裂解
  • 4篇裂解炉
  • 3篇乙烯
  • 3篇乙烯裂解
  • 3篇乙烯裂解炉
  • 2篇进化算法
  • 2篇ETHYLE...
  • 2篇MULTI-...
  • 1篇动态建模
  • 1篇多工况
  • 1篇多目标
  • 1篇多目标进化
  • 1篇多目标进化算...
  • 1篇多目标优化
  • 1篇遗传算法
  • 1篇荧光
  • 1篇荧光性
  • 1篇荧光性能
  • 1篇优化算法
  • 1篇约束优化问题

机构

  • 8篇华东理工大学
  • 3篇上海交通大学
  • 2篇中国石化上海...

作者

  • 3篇王振雷
  • 3篇王昕
  • 2篇祁荣宾
  • 2篇田亮
  • 1篇王晓阳
  • 1篇蒋达
  • 1篇年笑宇
  • 1篇钱锋
  • 1篇陈立芳
  • 1篇叶贞成
  • 1篇杜文莉
  • 1篇汪世杰
  • 1篇林越峰
  • 1篇刘皓阳
  • 1篇吴凌云

传媒

  • 5篇计算机与应用...
  • 4篇Chines...
  • 1篇化工学报
  • 1篇控制工程
  • 1篇Journa...
  • 1篇第36届中国...

年份

  • 1篇2018
  • 3篇2017
  • 3篇2016
  • 1篇2015
  • 3篇2014
  • 1篇2013
  • 2篇2012
12 条 记 录,以下是 1-10
排序方式:
一种求解混合整数非线性规划问题的混合优化方法被引量:5
2014年
提出了一种适用于求解混合整数非线性规划(MINLP)方法(GA-SQP),针对确定型算法在NLP子问题复杂的情况下难以在有限时间内收敛的问题,将MINLP问题分解为一系列简单的NLP子问题,外层用遗传算法搜索最优的整数变量集,内层执行SQP算法解决NLP问题,相比传统的确定性算法,它能减少模型本身的非凸性,从而消除双线性项的求解困难,而相对于智能算法,它充分利用梯度信息,在求解NLP问题上具有明显的效率优势。在改进求解效率上,进一步引入存储机制,减少NLP重复求解从而加速收敛。最后以3个常用的测试函数和水处理网络问题为例,数值计算表明本文提出的方法搜索精度明显优秀于传统的确定型算法和启发式算法。
林越峰蒋达杜文莉
关键词:混合整数非线性规划混合算法遗传算法
一致性检验结合模糊支配的多目标进化算法被引量:2
2018年
为了提高高维多目标优化算法的收敛性和解集的分布性,提出了一种基于降维结果一致性检验结合模糊支配的高维多目标进化算法COPCA-FDNSGA-II。在NSGA-II的主成分分析算法模型基础上,利用模糊理论对算法中的支配关系进行改进,针对信息不完备及伪解干扰的情况,在进化前期,对用模糊支配优化算法得到的非支配解进行主成分分析,去除冗余目标,并对降维结果进行一致性检验。将该算法与其他算法在测试函数上进行对比试验,结果表明,该算法在收敛性和分布性上具有明显优势。
陈立芳祁荣宾
关键词:降维NSGA-II
Outlet Temperature Correlation and Prediction of Transfer Line Exchanger in an Industrial Steam Ethylene Cracking Process被引量:3
2013年
Predicting the best shutdown time of a steam ethylene cracking furnace in industrial practice remains a challenge due to the complex coking process. As well known, the shutdown time of a furnace is mainly determined by coking condition of the transfer line exchangers (TLE) when naphtha or other heavy hydrocarbon feedstocks are cracked. In practice, it is difficult to measure the coke thickness in TLE through experimental method in the complex industrial situation. However, the outlet temperature of TLE (TLEOT) can indirectly characterize the coking situation in TLE since the coke accumulation in TLE has great influence on TLEOT. Thus, the TLEOT could be a critical factor in deciding when to shut down the furnace to decoke. To predict the TLEOT, a paramewic model was proposed in this work, based on theoretical analysis, mathematic reduction, and parameters estimation. The feasibility of the proposed model was further checked through industrial data and good agreements between model prediction and industrial data with maximum deviation 2% were observed.
金阳坤李进龙杜文莉王振雷钱锋
基于JIT-MOSVR的软测量方法及应用被引量:7
2017年
针对传统多模型软测量方法在面对复杂、多变工况时缺少在线更新机制、更新时输出精度降低等问题,提出了一种基于即时学习算法(JIT)的多模型在线软测量方法(MOSVR)。离线阶段首先采用模糊C均值聚类(FCM)对训练数据进行聚类,接着采用SVR建立初始模型集。在线部分以多模型输出作为主要输出,当出现新工况时,通过在线模型更新策略(OSMU)将输出模式切换为JIT,同时多模型集进行在线更新。该方法不仅拥有多模型输出的快速性、精确性,而且在模型更新时通过JIT模式还能保证输出的连续性、稳定性、精确性。最后将该软测量方法进行了数值仿真并运用到乙烷浓度软测量中,验证了该方法的有效性。
汪世杰王振雷王昕
关键词:软测量动态建模
Solving chemical dynamic optimization problems with ranking-based differential evolution algorithms被引量:3
2016年
Dynamic optimization problems(DOPs) described by differential equations are often encountered in chemical engineering. Deterministic techniques based on mathematic programming become invalid when the models are non-differentiable or explicit mathematical descriptions do not exist. Recently, evolutionary algorithms are gaining popularity for DOPs as they can be used as robust alternatives when the deterministic techniques are invalid. In this article, a technology named ranking-based mutation operator(RMO) is presented to enhance the previous differential evolution(DE) algorithms to solve DOPs using control vector parameterization. In the RMO, better individuals have higher probabilities to produce offspring, which is helpful for the performance enhancement of DE algorithms. Three DE-RMO algorithms are designed by incorporating the RMO. The three DE-RMO algorithms and their three original DE algorithms are applied to solve four constrained DOPs from the literature. Our simulation results indicate that DE-RMO algorithms exhibit better performance than previous non-ranking DE algorithms and other four evolutionary algorithms.
Xu ChenWenli DuFeng Qian
基于进化梯度搜索的多目标混合优化算法
2016年
基于梯度信息的线性搜索法具有快速的收敛性,但易陷入局部最优。当优化目标不可解析时,基于梯度信息的算法便不易应用。多目标进化算法以其优秀的全局特性广泛地应用于多目标优化问题,但其算法比较耗时,收敛速度慢。对此,本文提出一种基于进化梯度搜索的多目标混合算法。首先,结合单目标优化中的爬山算法与进化梯度搜索法,得到一种多目标局部搜索算法。其次,在算法前期采用适应度概率策略选择个体进行局部搜索。最后,在非支配集个体数达到种群个体数后,应用多目标进化算法保证其分布性。通过ZDT系列测试函数验证并与NSGA-II及EGS-NSGA-II混合算法比较,结果显示本算法具有更好的全局性及收敛快速性。
刘皓阳祁荣宾
关键词:荧光性能发光材料高分子
相关积分优化方法及其在裂解炉优化中的研究
裂解炉是石油化工产业中重要设备,优化裂解炉运行状态对提升乙烯装置绩效至关重要。由于裂解反应机理复杂,裂解炉模型难以确定,并且扰动频繁,运用传统优化方法难以解决裂解炉运行优化问题。本文提出将相关积分优化方法应用于裂解炉运行...
刘春平王昕王振雷
关键词:裂解炉目标函数
文献传递
乙烯裂解炉燃料气消耗的实时优化被引量:4
2015年
乙烯装置作为石化行业能耗大户,在乙烯装置能量优化过程中,炉群系统能耗优化起到至关重要的作用。在保证工业装置产品收率不变的情况下,本文采用调整操作变量裂解炉出口温度,达到炉群整体燃料气消耗降低的目的。本文采用K均值聚类算法结合即时学习局部建模方法,建立了精确的燃料气消耗预测模型,模型平均绝对百分比误差为0.0626%,相对误差在5%以内,满足实际工业过程对预测模型精度的要求。以某组工业数据为例,通过差分进化算法,炉群整体燃料气消耗量降低2.5%,有效的通过操作变量优化达到整体乙烯装置经济效益提高。
綦欢叶贞成钱锋吴凌云
关键词:差分进化算法
Multi-objective modeling and optimization for scheduling of cracking furnace systems被引量:8
2017年
Cracking furnace is the core device for ethylene production. In practice, multiple ethylene furnaces are usually run in parallel. The scheduling of the entire cracking furnace system has great significance when multiple feeds are simultaneously processed in multiple cracking furnaces with the changing of operating cost and yield of product. In this paper, given the requirements of both profit and energy saving in actual production process, a multi-objective optimization model contains two objectives, maximizing the average benefits and minimizing the average coking amount was proposed. The model can be abstracted as a multi-objective mixed integer non- linear programming problem. Considering the mixed integer decision variables of this multi-objective problem, an improved hybrid encoding non-dominated sorting genetic algorithm with mixed discrete variables (MDNSGA-II) is used to solve the Pareto optimal front of this model, the algorithm adopted crossover and muta- tion strategy with multi-operators, which overcomes the deficiency that normal genetic algorithm cannot handle the optimization problem with mixed variables. Finally, using an ethylene plant with multiple cracking furnaces as an example to illustrate the effectiveness of the scheduling results by comparing the optimization results of multi-objective and single objective model.
Peng JiangWenli Du
Dynamic Multi-objective Optimization of Chemical Processes Using Modified BareBones MOPSO Algorithm
2014年
Dynamic multi-objective optimization is a complex and difficult research topic of process systems engineering. In this paper,a modified multi-objective bare-bones particle swarm optimization( MOBBPSO) algorithm is proposed that takes advantage of a few parameters of bare-bones algorithm. To avoid premature convergence,Gaussian mutation is introduced; and an adaptive sampling distribution strategy is also used to improve the exploratory capability. Moreover, a circular crowded sorting approach is adopted to improve the uniformity of the population distribution.Finally, by combining the algorithm with control vector parameterization,an approach is proposed to solve the dynamic optimization problems of chemical processes. It is proved that the new algorithm performs better compared with other classic multiobjective optimization algorithms through the results of solving three dynamic optimization problems.
杜文莉王珊珊陈旭钱锋
共2页<12>
聚类工具0