您的位置: 专家智库 > >

国家自然科学基金(41075076)

作品数:5 被引量:19H指数:2
相关作者:谢正辉王爱慧杨晓春田向军宋海清更多>>
相关机构:中国科学院大气物理研究所南京信息工程大学北京信息科技大学更多>>
发文基金:国家自然科学基金国家重点基础研究发展计划国家高技术研究发展计划更多>>
相关领域:天文地球理学自动化与计算机技术更多>>

文献类型

  • 5篇中文期刊文章

领域

  • 3篇天文地球
  • 2篇理学
  • 1篇自动化与计算...

主题

  • 2篇数据同化
  • 2篇同化
  • 1篇地化
  • 1篇碳循环
  • 1篇土壤
  • 1篇土壤湿度
  • 1篇浅水波
  • 1篇陆面
  • 1篇陆面过程
  • 1篇陆面过程模式
  • 1篇敏感性
  • 1篇本征正交分解
  • 1篇POD
  • 1篇SOIL_M...
  • 1篇A-B
  • 1篇BM
  • 1篇CO2通量
  • 1篇ENSEMB...
  • 1篇FGS
  • 1篇LOCAL

机构

  • 2篇中国科学院大...
  • 1篇北京信息科技...
  • 1篇南京信息工程...

作者

  • 1篇田向军
  • 1篇杨晓春
  • 1篇王爱慧
  • 1篇盛炎平
  • 1篇谢正辉
  • 1篇宋海清

传媒

  • 1篇Scienc...
  • 1篇Scienc...
  • 1篇Atmosp...
  • 1篇北京信息科技...
  • 1篇中国科学:地...

年份

  • 2篇2014
  • 2篇2012
  • 1篇2011
5 条 记 录,以下是 1-5
排序方式:
A new approach for Bayesian model averaging被引量:2
2012年
Bayesian model averaging(BMA) is a recently proposed statistical method for calibrating forecast ensembles from numerical weather models.However,successful implementation of BMA requires accurate estimates of the weights and variances of the individual competing models in the ensemble.Two methods,namely the Expectation-Maximization(EM) and the Markov Chain Monte Carlo(MCMC) algorithms,are widely used for BMA model training.Both methods have their own respective strengths and weaknesses.In this paper,we first modify the BMA log-likelihood function with the aim of removing the addi-tional limitation that requires that the BMA weights add to one,and then use a limited memory quasi-Newtonian algorithm for solving the nonlinear optimization problem,thereby formulating a new approach for BMA(referred to as BMA-BFGS).Several groups of multi-model soil moisture simulation experiments from three land surface models show that the performance of BMA-BFGS is similar to the MCMC method in terms of simulation accuracy,and that both are superior to the EM algo-rithm.On the other hand,the computational cost of the BMA-BFGS algorithm is substantially less than for MCMC and is al-most equivalent to that for EM.
TIAN XiangJunXIE ZhengHuiWANG AiHuiYANG XiaoChun
一种求解贝叶斯模型平均的新方法被引量:10
2011年
贝叶斯模型平均(Bayesian model averaging,BMA)是最近提出的一种用于多模式集合预报的统计方法.进行贝叶斯模型平均需要准确估算模型集合中每个竞争模型的权重与方差,经常采用的方法是期望最大化(Expectation-Maximization,EM)方法与马尔可夫链蒙特卡洛(Markov Chain Monte Carlo,MCMC)方法,两种方法各有优劣.本文首先对BMA的(对数)似然函数进行改进使之无需BMA权重之和为1的显式约束,并利用一种有限记忆的拟牛顿优化算法(LBFGS-B)对其进行极大化,由此提出了一种求解贝叶斯模型平均的新方法(BMA-BFGS).采用三个陆面模式进行的土壤湿度多模式数值模拟试验表明:在计算精度方面,BMA-BFGS的精度与MCMC方法几乎一致,优于EM算法;在计算耗时性方面,BMA-BFGS的计算耗时与EM算法相当,远小于MCMC方法.
田向军谢正辉王爱慧杨晓春
关键词:陆面过程模式土壤湿度
A Local Implementation of the POD-Based Ensemble 4DVar with R-Localization
2014年
The purpose of this paper is to provide a robust and flexible implementation of a proper orthogonal decomposition-based ensemble four-dimensional variational assimilation method(PODEn4DVar) through Rlocalization.With R-localization,the implementation of the local PODEn4DVar analysis can be coded for parallelization with enhanced assimilation precision.The feasibility and effectiveness of the PODEn4DVar local implementation with R-localization are demonstrated in a two-dimensional shallow-water equation model with simulated observations(OSSEs) in comparison with the original version of the PODEn4DVar with B-localization and that without localization.The performance of the PODEn4DVar with localization shows a significant improvement over the scheme with no localization,particularly under the imperfect model scenario.Moreover,the R-localization scheme is capable of outperforming the Blocalization case to a certain extent.Further,the assimilation experiments also demonstrate that PODEn4DVar with R-localization is most efficient due to its easy parallel implementation.
TIAN Xiang-Jun
PODEn4DVar对松弛系数和局地化半径的敏感性
2012年
针对松弛系数和局地化半径的敏感性对PODEn4DVar同化方法性能的影响,以浅水波方程作为预报模型,测试了其对不同松弛系数α和局地化半径R的敏感性,获得了不同模型误差情形下该方法同化时产生的均方根误差变化情况,确定了不同模型误差时的最优松弛系数α和局地化半径R。实验结果表明,在模型有误差时,PODEn4DVar同化方法对参数地选取很敏感。选取最优参数值后,同化精度有了明显提高。
宋海清盛炎平
关键词:数据同化
The Chinese carbon cycle data-assimilation system(Tan-Tracker)被引量:7
2014年
In this study,the Chinese carbon cyle dataassimilation system Tan-Tracker is developed based on the atmospheric chemical transport model(GEOS-Chem)platform.Tan-Tracker is a dual-pass data-assimilation system in which both CO2concentrations and CO2fluxes are simultaneously assimilated from atmospheric observations.It has several advantages,including its advanced data-assimilation method,its highly efficient computing performance,and its simultaneous assimilation of CO2concentrations and CO2fluxes.Preliminary observing system simulation experiments demonstrate its robust performance with high assimilation precision,making full use of observations.The Tan-Tracker system can only assimilate in situ observations for the moment.In the future,we hope to extend Tan-Tracker with functions for using satellite measurements,which will form the quasioperational Chinese carbon cycle data-assimilation system.
Xiangjun TianZhenghui XieZhaonan CaiYi LiuYu FuHuifang Zhang
关键词:数据同化碳循环CO2通量大气观测大气化学
共1页<1>
聚类工具0