A high-codimension homoclinic bifurcation is considered with one orbit flip and two inclination flips accompanied by resonant principal eigenvalues. A local active coordinate system in a small neighborhood of homoclinic orbit is introduced. By analysis of the bifurcation equation, the authors obtain the conditions when the original flip homoclinic orbit is kept or broken. The existence and the existence regions of several double periodic orbits and one triple periodic orbit bifurcations are proved. Moreover, the complicated homoclinic-doubling bifurcations are found and expressed approximately.
The paper studies a codimension-4 resonant homoclinic bifurcation with one orbit flip and two inclination flips, where the resonance takes place in the tangent direction of homoclinic orbit.Local active coordinate system is introduced to construct the Poincar′e returning map, and also the associated successor functions. We prove the existence of the saddle-node bifurcation, the perioddoubling bifurcation and the homoclinic-doubling bifurcation, and also locate the corresponding 1-periodic orbit, 1-homoclinic orbit, double periodic orbits and some 2n-homoclinic orbits.