The diagnosis of water trees of cable insulation is of great importance as the water-treeing is a primary cause of aging breakdown for the middle voltage cables. In this paper, it is described how the water-tree-aged 10 kV XLPE cables were diagnosed. The cables were subjected to electrical stress of 5.9 kV/mm and a thermal load cycle in a curved water-filled tube for 3, 6 and 12 months of aging in accor- dance with the accelerated water-tree test method. The aged cables were used as the samples for water-tree diagnosis. First, the water-tree degraded cable, was charged by a DC voltage, and then the cable was grounded while a pulse voltage was applied to it for releasing the space charge trapped in the water trees. The amount of the space charge, which corresponds to the deterioration degree of the water trees, was calculated. The effects of DC voltage amplitude, pulse voltage repetition rate and aging conditions on the amount of the space charge were studied. Obtained results show that the amount of the space charge has a positive correlation with the applied DC voltage and the ag- ing time of the cables, and that a peak value of space charge appears with the increase of the pulse voltage repetition rate. An optimum pulse voltage repetition rate under which the space charge can be released rapidly is obtained. Furthermore, the releasing mechanism of space charge by the pulse voltage is discussed. Accumulated results show that the presented method has a high resolution for the diagnosis of water tree degradation degree and is expected to be applied in practice in future.
To understand the vibration noise behaviors of amorphous metal alloy core distribution transformer(AMACDT), a 10 k VA prototype was tested under no-load and short-circuit conditions, respectively. The vibration characteristics were described when rated voltage was applied to the secondary side, and the primary side was connected with different load resistances. The largest amplitude positions on the upper bracket and tank surfaces were recorded by vibration sensors arranged on the surface. A data-acquisition platform was set up for signal measurement. The vibration amplitude related to frequency was discussed, and experimental results indicated that the position with the largest amplitude accrued in the middle of the upper bracket and tank surface, at phases a and c, respectively. The experimental results suggest that magnetostrictive and electrodynamic forces play a major role in exciting the vibration noise. At the same time, some rib-reinforcements were welded on the upper bracket and tank surfaces to lessen the vibration energy, which reduced the noise.