The effects of spinning deformation and subsequent heat treatments on the mechanical properties and microstructure of 18Ni Co-free Maraging steel (T250) tube were evaluated comparatively with the perform. An obvious radial shrinkage is detected in spun tubes after heat treatment and the magnitude of the shrinkage induced by solution treatment is almost the same as that by aging. Plastic deformation during spinning elongated the grains severely in the direction of metal flow. The solution treatment resulted in a drastically refined grain and recrystallised microstructure, removing the effect of plastic deformation, relieving the tangential residual stress and strain and improving hardness. Subsequent aging obtained a tempered microstructure, enhancing hardness values strikingly for precipitation strengthening. XRD (X-ray diffraction) analysis indicated that the reversed austenite formed in a plate-like along the grain boundaries and the volume fraction of austenite in spun tube was more than double that in the preform. These results imply that the residual stress and stain induced by spinning process and reversed austenite forming during aging might have the similar contribution to the radical shrinkage.
Standardarized creep and rupture strength tests were conducted for commercial T91 martensitic heat-resistant steel at 650℃and corresponding microstructure was characterized by BSED, TEM and EDS. The martensitic microstructure degenerated seriously during creep exposure, including martensitic substructure recovering, carbides coarsening, dissolving and precipitating. EDS analysis shows that the M23C6 carbides in different morphologies have dissimilar compositions. The rod/sheet like M23 C6 particles within the matrix contain more additions, which might precipitate in situ while fine MX particles were re-solving. The high content of silicon in these rod/sheet like M2aC6 carbides is probably related to self diffusion coefficient increasing for the exposed condition at 650 ~C close to Curie temperature To. For those reasons, martensite substructure becomes unstable, and microstructure evolution is accelerated and leads to creep strength deteriorating severely.