In this paper, we study the large time behavior of solutions to the nonisentropic Navier-Stokes equations of general gas, where polytropic gas is included as a special case, with a free boundary. First we construct a viscous contact wave which approximates to the contact discontinuity, which is a basic wave pattern of compressible Euler equation, in finite time as the heat conductivity tends to zero. Then we prove the viscous contact wave is asymptotic stable if the initial perturbations and the strength of the contact wave are small. This generalizes our previous result [6] which is only for polytropic gas.
In this paper, we investigate the large-time behavior of solutions to the initial-boundary value problem for n × n hyperbolic system of conservation laws with artificial viscosity in the half line (0, ∞). We first show that a boundary layer exists if the corresponding hyperbolic part contains at least one characteristic field with negative propagation speed. We further show that such boundary layer is nonlinearly stable under small initial perturbation. The proofs are given by an elementary energy method.
An initial-boundary values problem in the half space (0, ∞ ) for p-system with artificial viscosity is investigated. It is shown that there exists a boundary layer solution. It is further proved that the boundary layer solution is nonlinear stable with arbitrarily large perturbation. The proof is given by an elementary energy method.
It is known that the one-dimensional nonlinear heat equation ut = f(u)x1x1,f'(u) > 0,u(±∞,t) = u±,u+ = u_ has a unique self-similar solution u(x1/1+t).In multi-dimensional space,u(x1/1+t) is called a planar diffusion wave.In the first part of the present paper,it is shown that under some smallness conditions,such a planar diffusion wave is nonlinearly stable for the nonlinear heat equation:ut-△f(u) = 0,x ∈ Rn.The optimal time decay rate is obtained.In the second part of this paper,it is further shown that this planar diffusion wave is still nonlinearly stable for the quasilinear wave equation with damping:utt + utt+ △f(u) = 0,x ∈ Rn.The time decay rate is also obtained.The proofs are given by an elementary energy method.
In this article, the author investigates some Hermite elliptic equations in a modified Sobolev space introduced by X. Ding [2]. First, the author shows the existence of a ground state solution of semilinear Hermite elliptic equation. Second, the author studies the eigenvalue problem of linear Hermite elliptic equation in a bounded or unbounded domain.