This paper is concerned with traveling wave solutions to a nonlocal dispersal epide- mic model. Combining the upper and lower solutions and monotone iteration method, we establish the existence of nondecreasing traveling wave fronts for the speed being larger than the critical one. Furthermore, by the approximation method, the existence of traveling wave fronts for the critical speed is established as well. Finally, we discuss the nonexistence of traveling wave fronts for the speed being smaller than critical one by Laplace transform.
This article is devoted to the study of global existence and exponential stability of solutions to an initial-boundary value problem of the quasilinear thermo-diffusion equations with second sound by means of multiplicative techniques and energy method provided that the initial data are close to the equilibrium and the relaxation kernel is strongly positive definite and decays exponentially.
In this paper we investigate the global attractors for the one-dimensional linear model of thermodiffusion with second sound. Using the method of contractive functions, we obtain the asymptotically compact of the semigroup and the existence of the global
In this article, the well-posedness and long-time behavior of a nonclassical diffusion equation of Kirchhoff type are considered. Using the method of Galerkin approximation, the existence and uniqueness of solutions are proved. At last, the existence of global attractors and its upper semicontinuous property are discussed.
In this paper,we propose a new method to study intermittent behaviors of coupled piecewise-expanding map lattices.We show that the successive transition between ordered and disordered phases occurs for almost every orbit when the coupling is small.That is,lim inf n→∞∑1≤i,j≤m|x_(i)(n)−x_(j)(n)|=0,lim sup n→∞∑1≤i,j≤m|x_(i)(n)−x_(j)(n)|≥c_(0)>0,where xi(n)correspond to the coordinates of m nodes at the iterative step n.Moreover,when the uncoupled system is generated by the tent map and the lattice consists of two nodes,we prove a phase transition occurs between synchronization and intermittent behaviors.That is,limn→∞|x_(1)(n)−x_(2)(n)|=0 for c−1/2<1/4 and intermittent behaviors occur for|c−1/2|>1/4,where 0≤c≤1 is the coupling.
In this paper, we first study the existence of transition fronts (generalized traveling fronts) for reaction-diffusion equations with the spatially heterogeneous bistable nonlinearity. By constructing sub-solution and super-solution we then show that transition fronts are globally exponentially stable for the solutions of the Cauchy problem. Furthermore, we prove that transition fronts are unique up to translation in time by using the monotonicity in time and the exponential decay of such transition fronts.
In this article, we study the large-time behavior of energy for a N-dimensional dissipative anisotropic elastic system. By means of multiplicative techniques, energy method, and Zuazua’s estimate technique, we prove the decay property of energy for anisotropic elastic system.
In this article, we consider the existence of trajectory and global attractors for nonclassical diffusion equations with linear fading memory. For this purpose, we will apply the method presented by Chepyzhov and Miranville [7, 8], in which the authors provide some new ideas in describing the trajectory attractors for evolution equations with memory.