Adding colors to monochrome thermal infrared images can help observers understand the scenery better. A nonlinear color estimation method for single-band thermal infrared imagery based on kernel principal component analysis (KPCA) and sparse representation was proposed. Nonlinear features of infrared image were extracted using KPCA. The relationship between image features and chromatic values was learned using sparse representation and a color estimation model was obtained. The thermal infrared images can be rendered automatically using the color estimation model. The experimental results show that the proposed method can render infrared image with an accurate color appearance. The proposed idea can also be used in other color estimation problem.
Semi-supervised dimensionality reduction is an important research area for data classification. A new linear dimensionality reduction approach, global inference preserving projection (GIPP), was proposed to perform classification task in semi-supervised case. GIPP provided a global structure that utilized the underlying discriminative knowledge of unlabeled samples. It used path-based dissimilarity measurement to infer the class label information for unlabeled samples and transformd the diseriminant algorithm into a generalized eigenequation problem. Experimental results demonstrate the effectiveness of the proposed approach.