您的位置: 专家智库 > >

国家自然科学基金(s90411014)

作品数:3 被引量:39H指数:3
发文基金:国家自然科学基金国家重点基础研究发展计划更多>>
相关领域:天文地球更多>>

文献类型

  • 3篇中文期刊文章

领域

  • 3篇天文地球

主题

  • 1篇全球变暖
  • 1篇变暖
  • 1篇NORTHE...
  • 1篇ODP
  • 1篇OKINAW...
  • 1篇PLANKT...
  • 1篇SINCE
  • 1篇SYSTEM
  • 1篇ASIAN_...
  • 1篇EVOLUT...
  • 1篇FORMAT...
  • 1篇GRAIN-...
  • 1篇ISOTOP...
  • 1篇KUROSH...
  • 1篇MONSOO...
  • 1篇冰川
  • 1篇冰川消融
  • 1篇EOLIAN
  • 1篇FORAMI...
  • 1篇TROUGH

传媒

  • 2篇Scienc...
  • 1篇Chines...

年份

  • 1篇2009
  • 2篇2007
3 条 记 录,以下是 1-3
排序方式:
Evolution and variation of the Tsushima warm current during the late Quaternary: Evidence from planktonic foraminifera, oxygen and carbon isotopes被引量:15
2007年
The evolution and variation history of the Tsushima warm current during the late Quaternary was reconstructed based on the quantitative census data of planktonic foraminiferal fauna, together with oxygen and carbon isotope records of mixed layer dweller G. ruber and thermocline dweller N. dutertrei in piston core CSH1 and core DGKS9603 collected separately from the Tsushima warm current and the Kuroshio dominated area. The result showed that the Tsushima warm current vanished in the lowstand period during 40―24 cal ka BP, while the Kuroshio still flowed across the Okinawa Trough, arousing strong upwelling in the northern Trough. Meanwhile, the influence of freshwater greatly increased in the northern Okinawa Trough, as the broad East China Sea continental shelf emerged. The freshwater reached its maximum during the last glacial maximum (LGM), when the upwelling obviously weakened for the lowest sea-level and the depression of the Kuroshio. The modern Tsushima warm current began its development since 16 cal ka BP, and the impact of the Kuroshio increased in the middle and north- ern Okinawa Trough synchronously during the deglaciation and gradually evolved as the main water source of the Tsushima current. The modern Tsushima current finally formed at about 8.5 cal ka BP, since then the circulation structure has been relatively stable. The water of the modern Tsushima cur- rent primarily came from the Kuroshio axis. A short-term wiggle of the current occurred at about 3 cal ka BP, probably for the influences from the enhancement of the winter monsoon and the depression of the Kuroshio. The cold water masses greatly strengthened during the wiggle.
LI TieGangSUN RongTaoZHANG DeYuLIU ZhenXiaLI QingJIANG Bo
关键词:KUROSHIOPLANKTONICFORAMINIFERAISOTOPESOKINAWATROUGH
Grain-size records at ODP Site 1146 from the northern South China Sea: Implications on the East Asian monsoon evolution since 20 Ma被引量:12
2007年
273 samples from Ocean Drilling Program (ODP) Site 1146 in the northern South China Sea (SCS) were analyzed for grain-size distributions using grain-size class vs. standard deviation method and end-member modeling algorithm (EMMA) in order to investigate the evolution of the East Asian monsoon since about 20 Ma. 10–19 μm/1.3–2.4 μm, the ratio of two grain-size populations with the highest variability through time was used to indicate East Asian winter monsoon intensity relative to summer monsoon. The mass accumulation rate of the coarsest end member EM1 (eolian), resulting from EMMA, can be used as a proxy of winter monsoon strength and Asian inland aridity, and the ratio of EM1/(EM2+EM3) as a proxy of winter monsoon intensity relative to summer monsoon. The combined proxies show that a profound enhancement of East Asian winter monsoon strength and winter monsoon intensity relative to summer monsoon occurred at about 8 Ma, and it is possible that the summer monsoon simultaneously intensified with winter monsoon at 3 Ma. Our results are well consistent with the previous studies in loess, eolian deposion in the Pacifc, radiolarians and planktonic foraminifera in the SCS. The phased uplift of the Himalaya-Tibetan Plateau may have played a significant role in strengthening the Asian monsoon at 8 Ma and 3 Ma.
Jan-Berend W. STUUT
关键词:EOLIANODP
Formation and evolution of the modern warm current system in the East China Sea and the Yellow Sea since the last deglaciation被引量:13
2009年
To reconstruct the formation and evolution process of the warm current system within the East China Sea (ECS) and the Yellow Sea (YS) since the last deglaciation, the paleoceangraphic records in core DGKS9603, core CSH1 and core YSDP102, which were retrieved from the mainstream of the Kuroshio Current (KC), the edge of the modern Tsushima Warm Current (TWC) and muddy region under cold waters accreted with the Yellow Sea Warm Current (YSWC) respectively, were synthetically analyzed. The results indicate that the formation and evolution of the modern warm current system in the ECS and the YS has been accompanied by the development of the KC and impulse rising of the sea level since the last deglaciation. The influence of the KC on the Okinawa Trough had enhanced since 16 cal kyr BP, and synchronously the modern TWC began to develop with the rising of sea level and finally formed at about 8.5 cal kyr BP. The KC had experienced two weakening process during the Heinrich event 1 and the Younger Drays event from 16 to 8.5 cal kyr BP. The period of 7-6 cal kyr BP was the strongest stage of the KC and the TWC since the last deglaciation. The YSWC has appeared at about 6.4 cal kyr BP. Thus, the warm current system of the ECS and the YS has ultimately formed. The weakness of the KC, indicated by the occurrence of Pulleniatina minimum event (PME) during the period from 5.3 to 2.8 cal kyr BP, caused the main stream of the TWC to shift eastward to the Pacific Ocean around about 3 cal kyr BP. The process resulted in the intruding of continent shelf cold water mass with rich nutrients. Synchronously, the strength of the YSWC was relatively weak and the related cold water body was active at the early-mid stage of its appearance against the PME background, which resulted in the quick formation of muddy deposit system in the southeastern YS. The strength of the warm current system in the ECS and the YS has enhanced evidently, and approached to the modern condition gradually since 3 cal kyr BP.
李铁刚南青云江波孙荣涛张德玉李青
关键词:冰川消融全球变暖
共1页<1>
聚类工具0