您的位置: 专家智库 > >

国家自然科学基金(s61073133)

作品数:1 被引量:3H指数:1
发文基金:国家自然科学基金更多>>
相关领域:自动化与计算机技术电子电信更多>>

文献类型

  • 1篇中文期刊文章

领域

  • 1篇电子电信
  • 1篇自动化与计算...

主题

  • 1篇SUPPOR...
  • 1篇BASED_...
  • 1篇BAYESI...
  • 1篇CLASSI...
  • 1篇DOUBLE...
  • 1篇ENSEMB...

传媒

  • 1篇Intern...

年份

  • 1篇2012
1 条 记 录,以下是 1-1
排序方式:
Double-layer Bayesian Classifier Ensembles Based on Frequent Itemsets被引量:3
2012年
Numerous models have been proposed to reduce the classification error of Naive Bayes by weakening its attribute independence assumption and some have demonstrated remarkable error performance. Considering that ensemble learning is an effective method of reducing the classifmation error of the classifier, this paper proposes a double-layer Bayesian classifier ensembles (DLBCE) algorithm based on frequent itemsets. DLBCE constructs a double-layer Bayesian classifier (DLBC) for each frequent itemset the new instance contained and finally ensembles all the classifiers by assigning different weight to different classifier according to the conditional mutual information. The experimental results show that the proposed algorithm outperforms other outstanding algorithms.
Wei-Guo YiJing DuanMing-Yu Lu
关键词:CLASSIFIER
共1页<1>
聚类工具0