We propose an alternative way to constrain the density dependence of the symmetry energy from the neutron skin thickness of nuclei which shows a linear relation to both the isospin asymmetry and the nuclear charge with a form of Z2/3. The relation of the neutron skin thickness to the nuclear charge and isospin asymmetry is systematically studied with the data from antiprotonic atom measurement, and with the extended Thomas-Fermi approach incorporating the Skyrme energy density functional. An obviously linear relationship between the slope parameter L of the nuclear symmetry energy and the isospin asymmetry dependent parameter of the neutron skin thickness can be found, by adopting 70 Skyrme interactions in the calculations. Combining the available experimental data, the constraint of -20 MeV 〈~ L 〈~ 82 MeV on the slope parameter of the symmetry energy is obtained. The Skyrme interactions satisfying the constraint are selected.
Strongly damped reactions of 238U+238U, at Ecm = 680—1880 MeV have been studied based on the improved quantum molecular dynamics model. We find that at a certain energy region the entrance channel potential is weakly repulsive and the dissipation is very strong after touching configuration, these two effects make the time delay of re-separation for colliding system. The single particle potential well of the transiently formed composite system has Coulomb barrier about 15—20 MeV high at the surface, which makes the excited unbound protons being still embedded in the potential well and moving in a common mono-single particle potential for a period of time and thus restrains from quick decay of the composite system.
The mass number distributions of three fragments from the ternary fission of the system 197Au+197Au are reproduced rather well by using the improved quantum molecular dynamics (ImQMD) model without any adjusting parameter. It is found that the probability of ternary fission evidently depends on the incident energy and the impact parameter, and the two-body dissipation is the main mechanism responsible for the formation of the third fragment with comparable mass.