Diblock copolymers polystyrene-block-polyvinyltriethoxysilane(PS-b-PVTES) were synthesized via atom transfer radical polymerization(ATRP), which self-assembled into spherical micelles in solvent of THF-methanol mixtures. The self-assembled micelles were immobilized by cross-linking reaction of VTES in a shell layer of micelles. The chemical structures of block copolymers and morphology of micelles were characterized in detail. It was found that the size of immobilized micelles was strongly affected by the copolymer concentration, composition of mixture solvent, and block ratios.
Thin films of polymer blends composed of alternating copolymer, diblock copolymer and/or homopolymer are studied using Monte Carlo simulation. A multilayer morphology is observed in the film, that is, the blended polymers assemble into individual domains arranged from interior to the surfaces of the film. The coexisting components residing throughout the neighboring domains in the film make no distinguishable interface between any neighboring domains. By this means, it forms a vertical composition gradient in the polymeric film. Being different from layer-by-layer deposition of polyelectrolyte or hydrogen bonding approach etc., the layered structure in this study is formed by polymer blending in one step. Alternating copolymers are found to be essential components to form vertical composition gradient (layered structure) in thin films.