We introduce a new parallel evolutionary algorithm in modeling dynamic systems by nonlinear higher-order ordinary differential equations (NHODEs). The NHODEs models are much more universal than the traditional linear models. In order to accelerate the modeling process, we propose and realize a parallel evolutionary algorithm using distributed CORBA object on the heterogeneous networking. Some numerical experiments show that the new algorithm is feasible and efficient.
We introduced the work on parallel problem solvers from physics and biology being developed by the research team at the State Key Laboratory of Software Engineering, Wuhan University. Results on parallel solvers include the following areas: Evolutionary algorithms based on imitating the evolution processes of nature for parallel problem solving, especially for parallel optimization and model-building; Asynchronous parallel algorithms based on domain decomposition which are inspired by physical analogies such as elastic relaxation process and annealing process, for scientific computations, especially for solving nonlinear mathematical physics problems. All these algorithms have the following common characteristics: inherent parallelism, self-adaptation and self-organization, because the basic ideas of these solvers are from imitating the natural evolutionary processes.
Li Yan, Kang Li-shan, Chen Yu-ping, Liu Pu, Cao Hong-qing, Pan Zheng-jun The State Key Laboratory of Software Engineering, Wuhan University, Wuhan 430072, Hubei, China