In this article, we introduce a coupled approach of local discontinuous Calerkin and standard finite element method for solving convection diffusion problems. The whole domain is divided into two disjoint subdomains. The discontinuous Galerkin method is adopted in the subdomain where the solution varies rapidly, while the standard finite element method is used in the other subdomain due to its lower computational cost. The stability and a priori error estimate are established. We prove that the coupled method has O(ε1/2 + h1/2)hk) convergence rate in an associated norm, where ε is the diffusion coefficient, h is the mesh size and k is the degree of polynomial. The numerical results verify our theoretical results. Moreover, 2k-order superconvergence of the numerical traces at the nodes, and the optimal convergence of the errors under L2 norm are observed numerically on the uniform mesh. The numerical results also indicate that the coupled method has the same convergence order and almost the same errors as the purely LDG method.
Based on an asymptotic expansion of finite element,a new extrapolation formula and extrapolation cascadic multigrid method(EXCMG)are proposed,in which the new extrapolation and quadratic interpolation are used to provide a better initial value on refined grid.In the case of triple grids,the error of the new initial value is analyzed in detail.A larger scale computation is completed in PC.
This article will combine the finite element method, the interpolated coefficient finite element method, the eigenfunction expansion method, and the search-extension method to obtain the multiple solutions for semilinear elliptic equations. This strategy not only grently reduces the expensive computation, but also is successfully implemented to obtain multiple solutions for a class of semilinear elliptic boundary value problems with non-odd nonlinearity on some convex or nonconvex domains. Numerical solutions illustrated by their graphics for visualization will show the efficiency of the approach.
The convergence and superconvergence properties of the discontinuous Galerkin (DG) method for a singularly perturbed model problem in one-dimensional setting are studied. By applying the DG method with appropriately chosen numerical traces, the existence and uniqueness of the DG solution, the optimal order L2 error bounds, and 2p+ 1-order superconvergence of the numerical traces are established. The numerical results indicate that the DG method does not produce any oscillation even under the uniform mesh. Numerical experiments demonstrate that, under the uniform mesh, it seems impossible to obtain the uniform superconvergence of the numerical traces. Nevertheless, thanks to the implementation of the so-called Shishkin-type mesh, the uniform 2p + 1-order superconvergence is observed numerically.
For numerical computations of multiple solutions of the nonlinear elliptic problem Δu + f(u = 0 in Ω, u = 0 on Γ, a search-extension method (SEM) was proposed and systematically studied by the authors. This paper shall complete its theoretical analysis. It is assumed that the nonlinearity is non-convex and its solution is isolated, under some conditions the corresponding linearized problem has a unique solution. By use of the compactness of the solution family and the contradiction argument, in general conditions, the high order regularity of the solution u ∈ H 1+α, α > 0 is proved. Assume that some initial value searched by suitably many eigenbases is already fallen into the neighborhood of the isolated solution, then the optimal error estimates of its nonlinear finite element approximation are shown by the duality argument and continuation method.
In this paper, we propose an accelerated search-extension method (ASEM) based on the interpolated coefficient finite element method, the search-extension method (SEM) and the two-grid method to obtain the multiple solutions for semilinear elliptic equations. This strategy is not only successfully implemented to obtain multiple solutions for a class of semilinear elliptic boundary value problems, but also reduces the expensive computation greatly. The numerical results in I-D and 2-D cases will show the efficiency of our approach.